

Spencer Place Development Company Limited

Generic Quantitative Risk Assessment

City Block2, Spencer Place, Dublin 1

602010-R02 (00)

FINAL

MARCH 2018

EXECUTIVE SUMMARY

RSK Ireland Limited (RSK) was commissioned by Spencer Place Development Company Limited (the client) to carry out an updated Generic Quantitative Risk Assessment (GQRA) for City Block 2, Spencer Place, Dublin 1 (the site) to assist with a planning application to Dublin City Council. A site location map is presented in Figure 1.

A Ground Conditions and GQRA Report was completed by AECOM in 2015 during the disposal of the site. The development plan for the site at the time of disposal included the excavation and construction of two basement level car parks. Since the acquisition of the site the development plan has been revised. The proposed development plan does not include the construction of basement levels with the new development constructed at ground level.

Following the completion of a desk study for the site and a review of the environmental data collected during the 2015 AECOM site investigation an updated GQRA was completed to assess environmental risks at the site in the context of the revised development plan.

Results of laboratory analysis of soil samples reported concentrations of lead which exceeded the adopted GAC in TP201 at 3.8-4.5mbgl and TP202 at 2.2-3.4mbgl. These exceedences indicate the existence of a potential risk associated with the direct contact and ingestion pathway. Given the depth to these soils and the nature of the proposed works it is considered unlikely that a viable pathway is present.

There were no other exceedences of human health GAC recorded in soil samples analysed.

There were no exceedences of the groundwater GAC considered protective of human health noted in samples analysed.

Concentrations of arsenic, in BH9 and BH12, and zinc, in BH9, exceeded the GAC for the protection of controlled waters. Based on the limited assessment completed by AECOM it is considered unlikely that these elevated concentrations present a risk to the River Liffey. However additional assessment is required to confirm the groundwater conditions at the site and assess the risk to the River Liffey.

All other results were reported at concentrations which did not exceed the GAC for the protection of the water environment.

As part of the 2015 AECOM site investigation, a ground gas risk assessment was not undertaken at the site. There is the potential that harmful ground gases could be present in shallow soils underlying the site which could impact upon future site users. Ground gas monitoring should be completed at the site to assess the potential risk to future site users and inform the requirement for mitigation measures if necessary.

It is considered unlikely that the elevated concentrations of arsenic and zinc detected in soil and groundwater at the site present a significant risk to future site users or the environment. The

scope of the assessment completed by AECOM in 2015 was limited therefore additional assessment work should be completed at the site to confirm the findings of this updated GQRA.

Based on the conclusions of this updated GQRA report RSK recommend that an additional environmental assessment should be undertaken at the site to fully characterise the groundwater and ground gas regimes at the site. The scope of this assessment would include the following:

- installation of twelve groundwater monitoring wells to an approximate depth of 8 m bgl.
- continuous monitoring of groundwater levels over a two week period to assess groundwater flow direction and tidal influence.
- completion of six rounds of soil gas monitoring to assess vapour risk at the site.
- completion of three groundwater monitoring events to fully characterise and assess the groundwater underlying the site.
- soil samples will be collected from boreholes to allow for an assessment to inform the potential for re-use of material at the site.

RSK GENERAL NOTES

Project No.:	602010 – R02 (00)
Title:	Generic Quantitative Risk Assessment – City Block 2, Spencer Place, Dublin 1
Client:	Spencer Place Development Company Limited
Date:	21 st March 2018
Office:	Dublin
Status:	FINAL

Author	Paul Feely	Technical reviewer	Peter Rodgers
Signature	Pre Suly	Signature	J. Reday -
Date:	21 st March 2018	Date:	21 st March 2018

RSK Ireland Limited (RSK) has prepared this report for the sole use of the client, showing reasonable skill and care, for the intended purposes as stated in the agreement under which this work was completed. The report may not be relied upon by any other party without the express agreement of the client and RSK. No other warranty, expressed or implied, is made as to the professional advice included in this report.

Where any data supplied by the client or from other sources have been used, it has been assumed that the information is correct. No responsibility can be accepted by RSK for inaccuracies in the data supplied by any other party. The conclusions and recommendations in this report are based on the assumption that all relevant information has been supplied by those bodies from whom it was requested.

No part of this report may be copied or duplicated without the express permission of RSK and the party for whom it was prepared.

Where field investigations have been carried out, these have been restricted to a level of detail required to achieve the stated objectives of the work.

TABLE OF CONTENTS

EXEC	CUTIVE SUMMARY	1
1	INTRODUCTION 1.1 Scope of work 1.2 Limitations	1 1 2
2	SITE DESCRIPTION	3
3	DESK STUDY REVIEW	4
	3.2 Hvdrogeology	4
3.2.2	Licensed groundwater abstractions	4
	3.3 Hydrology	5
	3.4 Historical Land Uses	5
3.4.1	EPA Licensed IPPC / Waste Facilities	5
4	AECOM SITE ASSESSMENT	6
5	RESULTS OF THE INVESTIGATION	7
	5.1 Soil Analytical Results	7
5.2.1	Soil Asbestos Analysis	.10
	5.3 Groundwater Analytical Results	.11
6	GENERIC QUANTIATIVE RISK ASSESSMENT	.15
	6.1 Human Health	.15
6.1.1	Soil 15	
6.1.2	Groundwater	.15
	6.2 Controlled Waters	.15
	6.2.1 Groundwater	.15
	6.3 Summary of Pollutant Linkages	.16
7	CONCLUSIONS	.18
8	RECOMMENDATIONS	.19

LIST OF FIGURES

- Figure 1 Site Locality Map
- Figure 2 Borehole and Trial Pit Location Plan

LIST OF APPENDICES

- Appendix A Service Constraints
- Appendix B AECOM Ground Conditions Report
- Appendix C Generic assessment criteria for a commercial use

1 INTRODUCTION

RSK Ireland Limited (RSK) was commissioned by Spencer Place Development Company Limited (the client) to carry out an updated Generic Quantitative Risk Assessment (GQRA) for City Block 2, Spencer Place, Dublin 1 (the site) to assist with a planning application to Dublin City Council. A site location map is presented in Figure 1.

A Ground Conditions and GQRA Report was completed by AECOM in 2015 during the disposal of the site. The development plan for the site at the time of disposal included the excavation and construction of two basement level car parks. Since the acquisition of the site the development plan has been revised. The proposed development plan does not include the construction of basement levels with the new development constructed at ground level.

The purpose of this GQRA report is to review the environmental data contained within the 2015 AECOM report and identify any potentially significant risks to human health and / or controlled waters in context of the revised proposed development plan for the site. The 2015 AECOM GQRA report is presented in Appendix B.

RSK undertook an Environmental Review and Data Gap Analysis (reference 602010 R01 (00) Environmental Review and Data Gap Analysis – City Block 2, Spencer Place, Dublin 1. *dated 9 March 2018*) of the AECOM report. A number of recommendations for additional assessment to supplement the existing dataset were provided in this report.

The following report has been prepared specifically and solely for the above noted project. Initial sections of the report describe the site. The subsequent part of the report contains a description of works undertaken by Aecom, a summary of the investigation findings, a GQRA, conclusions and recommendations.

This report is subject to RSK's Service Constraints provided in Appendix A.

1.1 Scope of work

The scope of work for the GQRA included the following:

- Review of desk based information.
- Comparison of AECOM laboratory soil and groundwater results to in-house derived screening values for human health for commercial land use.
- Comparison of AECOM laboratory groundwater results to selected guidance values for Controlled Waters (groundwater) for commercial land use.
- Provision of a GQRA report summarising the findings of the desk study and GQRA screening of laboratory results.
- Recommendations for additional assessment to supplement the existing dataset.

1.2 Limitations

The comments given in this report and the opinions expressed are based on the information reviewed. However, there may be conditions pertaining at the site that have not been disclosed by the investigation and therefore could not be taken into account. Groundwater levels may fluctuate seasonally and at times be significantly different than those recorded. In addition, Made Ground can vary in thickness and nature over short distances and may be significantly different within areas not subject to the intrusive investigation.

This report is subject to the RSK Ireland Limited service constraints given in Appendix A.

2 SITE DESCRIPTION

City Block 2 is situated at the junction of Sherriff Street Upper and New Wapping Street, Spencer Dock, Dublin 1. The site is located to the east of City Block 2 at national grid reference O 176 346. The site covers an area of approximately 7,500m² (0.75 hectare). The site location and setting is presented in Figure 1.

The site is generally covered in stone hardstanding. Approximately 20% is covered by concrete/asphalt access roads and car parking or building footprint.

RSK understands that the proposed development will comprise multi level residential accommodation with ground floor commercial useage. The proposed development does not include the excavation and construction of basement levels.

2.1 Surrounding Land-use

Land use surrounding the site is predominately commercial and residential in nature. The site is bound to the north by Sheriff Street Upper, with an office/residential apartment complex and terraced housing beyond. The closest residential properties are approximately 20m north of the site. Railway sidings are present approximately 100m to the northeast and 150m to the north of the site. A number of terraced residential properties are located on the south eastern site boundary. Mayor Street forms the remainder of the southern site boundary. New Wapping Street forms the eastern site boundary, with a number of terraced residential properties located on the eastern side of the street. The currently undeveloped western half of City Block 2 is immediately west of the site. An access road to apartment complexes is located beyond. The closest residential properties are approximately 200m west of the site.

3 DESK STUDY REVIEW

The desk study review is detailed in the following section and summarises information obtained from the Ordinance Survey of Ireland (OSI) database located at http://map.geohive.ie/mapviewer.html.

3.1 Site Geology

The site is underlain by made ground overlying alluvial clay deposits. According to bedrock mapping compiled by the Geological Survey of Ireland (GSI), the site is underlain by the Calp, Marine Shelf Facies Formation of Carboniferous age, which is described as limestone and calcareous shale of the Tobercolleen and Lucan formations.

3.2 Hydrogeology

According to the GSI, aquifers in the Republic of Ireland are classified as follows:

- <u>Regionally Important</u> An aquifer which is sufficiently productive to be able to yield enough water to boreholes or springs to supply major regional water schemes. These are divided into: extensive sand/gravel aquifers; karst aquifers; and fissured aquifers.
- Locally Important An aquifer which is moderately productive, i.e. capable of yielding enough water to boreholes or springs to supply villages, small towns or factories. These are divided into: Sand/gravel aquifers; Bedrock aquifers which are generally moderately productive; and Bedrock aquifers which are moderately productive only in local zones.
- <u>Poor</u> An aquifer which is normally capable of yielding only sufficient water from wells or springs to supply single houses, small farms or small group water schemes. These can be sub divided into: Bedrock aquifers which are generally unproductive except for local zones and Bedrock aquifers which are generally unproductive.

The GSI classifies the Marine Shelf Facies as locally important (LI). Groundwater vulnerability is identified by the geological survey of Ireland (GSI) as Low.

3.2.2 Licensed groundwater abstractions

There are no licensed ground water abstractions identified by the GSI within a 1km radius of the site.

3.3 Hydrology

The nearest surface watercourse is the River Liffey approximately 200 m to the south of the site. The river water quality status for the River Liffey at this location is classified by the EPA as "unpolluted".

3.4 Historical Land Uses

A review of the site history was undertaken by assessing the available historical maps and land use data (available at <u>http://map.geohive.ie/mapviewer.html</u>).

The earliest available map dating from 1837 - 1842 indicates that the site is undeveloped. The site is bound by Wapping Street to the west. A number of residential properties are located off Sheriff Street in the northeast corner of the site. A 'Vitriol works' (sulphuric acid works) is present approximately 20m to the southeast of the site and a 'Vinegar Works' is located approximately 60m west of the site.

The next available map (dating from 1888-1913) shows that the site is in use as a timber yard. The railway is now present 40m to the west and North wall station is located approximately 60m to the south west of the site. The surrounding land use to the north, south and east is predominantly residential.

Aerial photos from the period 1995 to 2015 have been reviewed however these are of poor resolution and it is difficult to make any conclusions as to land use and layout on-site and in the surrounding area. However the railway line and station to the west and south west is visible in photos dated 1995 and 2000, and is no longer present in the photo dated 2005.

3.4.1 EPA Licensed IPPC / Waste Facilities

A review of OSI data (available at <u>http://map.geohive.ie/mapviewer.html</u>) identifies that a waste licence held by SITA Environmental Ltd is associated with the neighbouring site to the west.

An Integrated Pollution Prevention and Control (IPPC) licensed facility is identified approximately 200m south east of the site associated with Brooks Thomas Ltd. RSK understands that the facility is no longer active.

4 AECOM SITE ASSESSMENT

The below section summarises works undertaken by AECOM during 2015 at the site. The AECOM report is presented in Appendix B.

<u>Ground Conditions Report – Generic Quantitative Risk Assessment, Site at the Junction of</u> <u>Sherriff Street Upper and New Wapping Street. City Block 2, Spencer Dock, Dublin 1. (Reference</u> <u>47092981, dated 21 September 2015).</u>

AECOM completed a site investigation and Generic Quantitative Risk Assessment (GQRA) at the site during September 2015. The site investigation included the drilling and installation of six groundwater monitoring wells and excavation of eleven test pits across the site. Soil samples were collected from each borehole and test pit. Groundwater samples were collected from three of the groundwater monitoring wells for laboratory analysis. Borehole and trial pit locations are shown on Figure 2.

The GQRA reported a number of soil samples which exceeded the adopted Generic Assessment Criteria (GAC) for the protection of human health for a number of parameters including hydrocarbons, polycyclic aromatic hydrocarbons (PAHs, polychlorinated biphenyls (PCBs), semi volatile compounds (sVOCs), volatile organic compounds (VOCs) and metals. The results of laboratory analysis for groundwater samples reported concentrations of arsenic and zinc at levels which exceeded the GAC for the protection of controlled waters (River Liffey and Dublin Bay) in two monitoring wells (BH9 and BH12).

It was noted by AECOM that BH12 was installed as a potential pumping well for future dewatering operations during redevelopment of the site. As a result BH12 was drilled and installed at much wider diameter (260 mm) than a typical groundwater monitoring well (50 mm). The increased diameter of the well made it difficult to recover a representative groundwater sample as purging the well prior to sampling was not possible. The results of laboratory analysis for the groundwater sample recovered from BH12 may not be representative of the groundwater conditions at the site.

Based on the proposed development of the site at the time of the GQRA AECOM assumed that a sheet pile wall would be installed to facilitate the excavation and construction of a basement level car parking. AECOM concluded that the installation of this sheet pile wall will prevent elevated concentrations of arsenic and zinc impacting the River Liffey and Dublin Bay.

5 RESULTS OF THE INVESTIGATION

Laboratory analytical results from the AECOM investigation are summarised in the following section.

5.1 Soil Analytical Results

A summary of the concentrations of contaminants reported by the laboratory analysis of selected soil samples are presented in Table 5-1 to Table 5-3 inclusive. The laboratory report is presented within the appended AECOM GQRA report.

Contaminant of Concern	Max. Reported Concentration (mg/kg)	Location (m)	GAC Human Health – Commercial (mg/kg)*	GAC Exceedences (mg/kg)
Aliphatics EC5-EC6	<0.5	All	5,900 (558)	Ν
Aliphatics EC6-EC8	<0.5	All	17,400 (322)	Ν
Aliphatics EC8-EC10	<0.5	All	4,800 (190)	Ν
Aliphatics EC10-EC12	<0.2	All	22,900 (118)	Ν
Aliphatics EC12-EC16	<0.4	All	82,000 (59)	Ν
Aliphatics EC16-EC35	75.0	TP208 (2.8-3.7)	1,000,000	Ν
Aliphatics EC35-EC40	<7	All	1,000,000**	Ν
Aromatics EC8-EC10	<0.5	All	8,100 (1,503)	Ν
Aromatics EC10-EC12	<0.2	All	28,000 (899)	Ν
Aromatics EC12-EC16	15	TP207 (2.3-3.6)	37,000	Ν
Aromatics EC16-EC21	117	TP208 (2.8-3.7)	28,000	Ν
Aromatics EC21-EC35	247	TP208 (2.8-3.7)	28,000	Ν
Aromatics EC35-EC40	50	TP208 (2.8-3.7)	28,000**	Ν
Benzene	0.023	TP208 (2.8-3.7)	50	Ν
Toluene	0.013	TP210 (2.3-3.5)	107,000 (1,916)	Ν
Ethylbenzene	<0.025	All	13,000 (1,216)	Ν
Xylene	<0.025	All	13,600 (1,353)	Ν
МТВЕ	<0.025	All	12,100	Ν
Total VOCs	0.077	BH10	Various	Ν
Total SVOCs	<0.01	All	Various	Ν

* - GAC for soil SOM of 2.5% used

** - GAC applies to HC bands EC35-EC44

All – All results are below the LMDL

N - No exceedences recorded

n/a – Not applicable

Figures in brackets – RSK has adopted an approach for petroleum hydrocarbons in accordance with LQM/CIEH whereby the concentration modelled for each petroleum hydrocarbon fraction has been tabulated as the GAC with the corresponding solubility or vapour saturation limits given in brackets.

Table 5-1: TPH, BTEX, MTBE VOCs AND SVOCs Soil Analytical Results

Contaminant of Concern	Max. Reported Concentration (mg/kg)	Location (m)	GAC Human Health – Commercial (mg/kg)*	GAC Exceedences (mg/kg)
Naphthalene	0.34	TP209 (3.7-4.0)	3,900 (183)	Ν
Acenaphthylene	0.12	TP209 (3.7-4.0)	110,000	Ν
Acenaphthene	0.12	TP209 (3.7-4.0)	110,000	Ν
Fluorene	0.22	TP207 (2.3-3.6)	68,000	Ν
Phenanthrene	2.93	TP209 (3.7-4.0)	22,000	Ν
Anthracene	0.42	TP209 (3.7-4.0)	540,000	Ν
Fluoranthene	2.87	TP209 (3.7-4.0)	23,000	Ν
Pyrene	1.90	TP209 (3.7-4.0)	54,000	Ν
Benzo(a)anthracene	1.06	TP209 (3.7-4.0)	170	Ν
Chrysene	1.47	TP209 (3.7-4.0)	350	Ν
Benzo(b)fluoranthene	1.30	TP209 (3.7-4.0)	45	Ν
Benzo(k)fluoranthene	1.81	TP209 (3.7-4.0)	1,200	Ν
Benzo(a)pyrene	0.87	TP209 (3.7-4.0)	77	Ν
Indeno(123cd)pyrene	0.66	TP209 (3.7-4.0)	510	Ν
Dibenzo(ah)anthracene	0.19	TP209 (3.7-4.0)	3.6	N
Benzo(ghi)perylene	0.70	TP209 (3.7-4.0)	3,900	Ν

* - GAC for soil SOM of 2.5%

All – All results are below the LMDL

N - No exceedences recorded

Figures in brackets – RSK has adopted an approach for petroleum hydrocarbons in accordance with LQM/CIEH whereby the concentration modelled for each petroleum hydrocarbon fraction has been tabulated as the GAC with the corresponding solubility or vapour saturation limits given in brackets.

Table 5-2: PAHs Soil Analytical Results

Contaminant of Concern	Max. Reported Concentration (mg/kg)	Location (m)	GAC Human Health – Commercial* (mg/kg)	GAC Exceedences (mg/kg)	
Chromium VI	0.5	TP208 (2.8-3.7)	49	Ν	
Antimony	120	TP202 (2.2-3.4)	**	n/a	
Arsenic	606.9	TP202 (2.2-3.4)	640	Ν	
Barium	310	TP207 (2.3-3.6)	**	n/a	
Cadmium	87.7	TP202 (2.2-3.4)	410	Ν	
Chromium	167.2	TP201 (3.8-4.5)	8,600	Ν	
Copper	10,930	TP202 (2.2-3.4)	68,000	Ν	
Lead	18,580	TP202 (2.2-3.4)	2,300	TP201 @ 3.8-4.5m (18,300), TP202 @ 2.2- 3.4m (18,580)	
Mercury	2.0	TP207 (2.3-3.6)	1,120	Ν	
Molybdenum	76	TP202 (2.2-3.4)	**	n/a	
Nickel	50.1	BH10	980	Ν	
Selenium	9	BH10	12,000	Ν	
Zinc	17,920	TP202 (2.2-3.4)	740,000	Ν	
* - GAC for soil SOM of 2.5% ** - GAC not calculated				lated	
All – All results are below the LMDL			N - No exceedenc	es recorded	
n/a – Not applicable as there is no GAC					

Table 5-3: Metals Soil Analytical Results (mg/kg)

5.2.1 Soil Asbestos Analysis

Twenty two soil samples were analysed for the presence of asbestos. The laboratory reports are presented within the appended AECOM GQRA report.

Chrysotile asbestos was identified in the soils sample recovered from TP205 at depths between 4.0m below ground level (bgl) and 4.3mbgl. The asbestos was quantified as <0.001%. No asbestos was detected in any of the other samples forwarded for analysis.

5.3 Groundwater Analytical Results

The results of the laboratory analysis of the three groundwater samples taken are presented in Table 5-4 to Table 5-6 inclusive. The laboratory report is presented within the appended AECOM GQRA report.

Contaminant of Concern	Max. Reported Concentration (mg/l)	Location	GAC Human Health – Commercial (mg/l)*	GAC –Controlled Waters (mg/L)	Exceedence Location (mg/l)
Aliphatics EC5-EC6	<0.005	All	35.9	***	Ν
Aliphatics EC6-EC8	<0.005	All	5.37	***	Ν
Aliphatics EC8-EC10	<0.005	All	0.427	***	Ν
Aliphatics EC10-EC12	<0.005	All	0.0339	***	Ν
Aliphatics EC12-EC16	<0.01	All	0.000759**	***	Ν
Aliphatics EC16-EC21	<0.02	All	*	***	n/a
Aliphatics EC21-EC35	<0.01	All	*	***	n/a
Aromatics EC5-EC7	<0.005	All	*	***	n/a
Aromatics EC7-EC8	<0.005	All	*	***	n/a
Aromatics EC8-EC10	<0.005	All	64.6	***	Ν
Aromatics EC10-EC12	<0.005	All	24.5	***	Ν
Aromatics EC12-EC16	<0.01	All	5.75	***	Ν
Aromatics EC16-EC21	<0.01	All	*	***	n/a
Aromatics EC21-EC35	<0.01	All	*	***	n/a
Total TPH	<0.02	All	*	0.0075 ^{(1)**}	Ν
Benzene	<0.0005	All	51.33	0.00075 ⁽¹⁾	Ν
Toluene	<0.0005	All	107,000 (1,916)	0.525 ⁽¹⁾	Ν
Ethylbenzene	<0.0005	All	13,000 (1,216)	0.01 ⁽²⁾	Ν
Xylene	<0.0015	All	13,600 (1,353)	0.01 ⁽²⁾	Ν
МТВЕ	<0.0001	All	12,100	0.01 ⁽¹⁾	Ν
Total VOCs	<0.008	All	Various	Ν	Ν
Total SVOCs	<0.001	All	Various	N	Ν

Where values are in bold they have exceeded the GAC for Human Health

Where values are <u>underlined</u> the have exceeded the GAC for Controlled Waters (1) S.I. 366 European Union Environmental Objectives (Groundwater) (Amendment) Regulations 2016⁽⁵⁾

(2) EPA Interim Report Towards Setting Guideline values for the Protection of Groundwater in Ireland 2003 ⁽⁶⁾
* GAC not calculated owing to low volatility of substance and therefore no pathway, or an absence of toxicological data.

** GAC is set below the LMDL. Where the analysis indicates concentrations below the LMDL a non-exceedence of the criteria will be inferred. *** No GAC available in legislation or guidance. N – No exceedences recorded n/a – Not applicable as there is no GAC

Table 5-4: TPH, BTEX, MTBE, VOCs and SVOCs Groundwater Analytical Results and GACs (mg/l)

N – No exceedences recorded

Contaminant of Concern	Max. Reported Concentration (mg/l)	Location	GAC Human Health – Commercial (mg/L)	GAC – Controlled Waters (mg/L)	Exceedence Location (mg/l)
Chromium VI	<0.002	All	*	0.0075 ⁽¹⁾	Ν
Arsenic	0.4751	BH12	*	0.0075 ⁽¹⁾ **	<u>BH9 (0.0237)</u> BH12 (0.4751)
Barium	0.0347	BH12	*	0.1	N
Berylium	<0.0005	All	*	*	Ν
Boron	0.476	BH12	*	1	Ν
Cadmium	0.00171	BH12	*	***	Ν
Chromium	0.0006	BH9	*	0.0375 (1)	Ν
Copper	<0.0003	All	*	0.03 (2)	Ν
Lead	0.0031	BH9	*	0.0075 (1)	Ν
Mercury	<0.0005	All	0.056	0.00075 (1)	Ν
Nickel	0.0009	BH9	*	0.02 (2)	Ν
Selenium	<0.0012	All	*	***	Ν
Vanadium	0.0022	BH9	*	*	Ν
Zinc	0.174	BH9	*	0.075 ⁽¹⁾	<u>BH9 (0.174)</u>

Where values are in bold they have exceeded the GAC for Human Health Where values are <u>underlined</u> the have exceeded the GAC for Controlled Waters (1) S.I. 366 European Union Environmental Objectives (Groundwater) (Amendment) Regulations 2016 ⁽⁵⁾

(2) EPA Interim Report Towards Setting Guideline values for the Protection of Groundwater in Ireland 2003 ⁽⁶⁾
* GAC not calculated owing to low volatility of substance and therefore no pathway, or an absence of toxicological data.

*** No GAC available in legislation or guidance.

** GAC is set below the LMDL. Where the analysis indicates concentrations below the LMDL a non-exceedence of the criteria will be

inferred.

Not applicable as there is no GAC

Table 5-5: Dissolved Metals Groundwater Analytical Results and GACs (mg/l)

Contaminant of Concern	Max. Reported Concentration (mg/l)	Location	GAC Human Health – Commercial (ug/L)	GAC – Protection of Water Environment (ug/L)	Exceedence Location (mg/l)
Naphthalene	<0.001	All	19,000	1.0 ⁽²⁾	Ν
Acenaphthylene	<0.0005	All	7,950	***	Ν
Acenaphthene	<0.001	All	4,100	***	Ν
Fluorene	<0.0005	All	*	***	Ν
Phenanthrene	<0.0005	All	*	***	Ν
Anthracene	<0.0005	All	*	10,000 ⁽²⁾	Ν
Fluoranthene	<0.0005	All	*	1.0 ⁽²⁾	Ν
Pyrene	<0.0005	All	*	***	Ν
Benzo(a)anthracene	<0.0005	All	*	***	Ν
Chrysene	<0.0005	All	*	***	Ν
Benzo(b)fluoranthene	<0.001	All	*	0.5 ⁽²⁾	Ν
Benzo(k)fluoranthene	<0.001	All	*	0.05 ⁽²⁾	Ν
Benzo(a)pyrene	<0.001	All	*	0.0075 ⁽¹⁾	Ν
Indeno(123cd)pyrene	<0.001	All	*	0.05 ⁽²⁾	Ν
Dibenzo(ah)anthracene	0.00804	<0.005	*	***	Ν
Benzo(ghi)perylene	<u>0.107</u>	< 0.005	*	0.05 ⁽²⁾	Ν

Where values are in bold they have exceeded the GAC for Human Health Where values are <u>underlined</u> the have exceeded the GAC for Controlled Waters

(1) S.I. 366 European Union Environmental Objectives (Groundwater) (Amendment) Regulations 2016 ⁽⁵⁾
(2) EPA Interim Report Towards Setting Guideline values for the Protection of Groundwater in Ireland 2003 ⁽⁶⁾
* GAC not calculated owing to low volatility of substance and therefore no pathway, or an absence of toxicological data.

** GAC is set below the LMDL. Where the analysis indicates concentrations below the LMDL a non-exceedence of the criteria will be inferred.

*** No GAC available in legislation or guidance. N – No exceedences recorded n/a – Not applicable as there is no GAC

Table 5-6: PAHs Groundwater Analytical Results and GACs (ug/l)

6 GENERIC QUANTIATIVE RISK ASSESSMENT

6.1 Human Health

6.1.1 Soil

The soil results have been compared to generic assessment criteria (GAC) derived by RSK for a commercial use. A commercial use has been selected based on the proposed development plan of commercial units at ground level, below multi-level residential units. Soils have been assessed using a GAC for soils with SOM content of 2.5% which reflects the calculated SOM results recorded during this investigation. The screening values for human health and their derivation are included in Appendix C.

Results of laboratory analysis of soil samples reported concentrations of lead which exceeded the adopted GAC in TP201 at depths between 3.8-4.5mbgl and TP202 at depths between 2.2-3.4mbgl.

There were no other exceedences of human health GAC recorded in soil samples analysed.

6.1.2 Groundwater

The groundwater results have been compared to generic assessment criteria (GAC) derived by RSK assuming a commercial end use. The GAC for a sandy soil with a groundwater depth of 2.5mbgl, considered most representative of site conditions have been used. The screening values for human health and their derivation are included in Appendix C.

There were no exceedences of the GAC considered protective of human health noted in samples analysed.

6.2 Controlled Waters

6.2.1 Groundwater

Where available Irish Environmental Quality Standard (EQS) values have been used which have been obtained from Statutory Instrument No. 366 '*European Union Environmental Objectives* (*Groundwater*) (*Amendment*) Regulations 2016'. These values have been supplemented by the Irish interim values presented in the EPA report 'Interim Report Towards Setting Guideline Values for the Protection of Groundwater in Ireland' dated 2003.

Concentrations of arsenic were reported in monitoring wells BH9 and BH12 at levels which exceeded the GAC for the protection of controlled waters.

Concentrations of zinc were reported in monitoring well BH9 at levels which exceeded the GAC for the protection of controlled waters.

All other results were reported at concentrations which did not exceed the GACs for the protection of the water environment.

Based on the limited assessment completed by AECOM, RSK considers it unlikely that the elevated concentrations of arsenic and zinc pose a significant risk to controlled waters. The concentrations of zinc and arsenic reported for groundwater underlying Block 2 are likely to be localised hotspots associated with leaching of metals from the overlying made ground. The concentrations reported are likely to be representative of the groundwater conditions in the wider docklands area.

Additional assessment of groundwater conditions will be required to fully assess the risk to controlled waters and requirement for mitigation measures.

6.3 Summary of Pollutant Linkages

Table 6-1 records the potential pollutant linkages that have been identified at the site. Justifications for the identification of a potential pollutant linkage together with the likelihood are also discussed in Table 6-1.

Source	Pathway	Receptor	Linkage?		
		Future Site Workers and	Incomplete. Lead concentrations in TP201 and TP202 exceeded		
	Direct Contact	Users	to exceeding soils it is considered unlikely that a direct contact		
		Off-site workers and residents	pathway exists. Construction workers may come in to contact with impacted soils during excavation or piling works, however risks can be managed through the use of appropriate PPE and		
		Maintenance Workers	safe work practices.		
Metals, PAH, BTEX, MTBE, TPH, VOCs and SVOCs in soil		Construction Workers	There are no other exceedences of the GAC considered protective of Human Health with regards to a commercial end use.		
	Leaching	Groundwater	Incomplete. There are no significant concentrations of contaminants identified in soils on-site and no exceedences of the GAC in groundwater considered protective of Human Health with regards to a commercial end use indicating absence of pathway. Concentrations of Arsenic and Zinc have exceeded the controlled waters GAC however this is likely representative of the wider aquifer conditions as a result of historic anthropogenic inputs in area around the site		
	Vapour	Future site users	Potentially complete. Based on the results of soil analysis		
	migration along fill, services and	Off-site workers and residents	Human Health with regards to a commercial end use. Ground		
	permeable strata	Maintenance/ Construction Workers	the site. There is the potential that ground gases are present at the site and could impact future site users.		
	Inhalation	Future Site Workers and	Incomplete Chrysotile ashestos was identified in the soils		
		Users	sample recovered from TP205 4 0mbdl-4 3mbdl. The asbestos		
Asbestos in Soil		Off-site workers and residents	was quantified as <0.001%. Given the quantity, depth of asbestos and nature of proposed development it is considered		
		Maintenance Workers	unlikely that a pathway exists. No asbestos was detected in any		
		Construction Workers	of the other samples forwarded for analysis.		
		Site workers			
		Site users	Incomplete The GAC protective of Human health have not been		
	Direct contact	Off-site residents	exceeded and LNAPL has not been identified on-site.		
	and ingestion	Maintenance workers			
		Construction Workers			
Metals PAH		Locally Important Aquifer	Potentially complete. Exceedences of the GAC protective of		
BTEX, MTBE and TPH in groundwater	Migration	River Liffey (200m south of site)	controlled waters for concentrations of arsenic and zinc have been reported in BH9 and BH12. Whilst it is unlikely that these concentrations represent a risk to the River Liffey, additional assessment is required to fully assess the risk.		
	Vapour	Future site users			
	migration along fill,	Off-site workers and residents	Incomplete. There are no exceedences of the GAC considered protective of Human Health with regards to a commercial end		
	services and	Maintenance/	use.		
	strata	Construction Workers			

Table 6-1: Summary of Pollutant Linkages

Based upon the above information two potentially complete pollution linkages have been identified at the site. Additional assessment is required to fully assess the risk posed by these potentially complete pollution linkages and the requirement for mitigation measures.

7 CONCLUSIONS

Following the completion of a desk study for the site and a review of the environmental data collected during the 2015 AECOM site investigation an updated GQRA was completed to assess environmental risks at the site in the context of the revised development plan.

Results of laboratory analysis of soil samples reported concentrations of lead which exceeded the adopted GAC in TP201 at 3.8-4.5mbgl and TP202 at 2.2-3.4mbgl. These exceedences indicate the existence of a potential risk associated with the direct contact and ingestion pathway. Given the depth to these soils and the nature of the proposed works it is considered unlikely that a viable pathway is present.

There were no other exceedences of human health GAC recorded in soil samples analysed.

There were no exceedences of the groundwater GAC considered protective of human health noted in samples analysed.

Concentrations of arsenic, in BH9 and BH12, and zinc, in BH9, exceeded the GAC for the protection of controlled waters. Based on the limited assessment completed by AECOM it is considered unlikely that these elevated concentrations present a risk to the River Liffey. However additional assessment is required to confirm the groundwater conditions at the site and assess the risk to the River Liffey.

All other results were reported at concentrations which did not exceed the GAC for the protection of the water environment.

As part of the 2015 AECOM site investigation, a ground gas risk assessment was not undertaken at the site. There is the potential that harmful ground gases could be present in shallow soils underlying the site which could impact upon future site users. Ground gas monitoring should be completed at the site to assess the potential risk to future site users and inform the requirement for mitigation measures if necessary.

It is considered unlikely that the elevated concentrations of arsenic and zinc detected in soil and groundwater at the site present a significant risk to future site users or the environment. The scope of the assessment completed by AECOM in 2015 was limited therefore additional assessment work should be completed at the site to confirm the findings of this updated GQRA.

8 **RECOMMENDATIONS**

Based on the conclusions of this updated GQRA report RSK recommend that an additional environmental assessment should be undertaken at the site to fully characterise the groundwater and ground gas regimes at the site. The scope of this assessment would include the following:

- installation of twelve groundwater monitoring wells to an approximate depth of 8 m bgl.
- continuous monitoring of groundwater levels over a two week period to assess groundwater flow direction and tidal influence.
- completion of six rounds of soil gas monitoring to assess vapour risk at the site.
- completion of three groundwater monitoring events to fully characterise and assess the groundwater underlying the site.
- soil samples will be collected from boreholes to allow for an assessment to inform the potential for re-use of material at the site.

FIGURES

Job Number: 602010
Job Title: City Block 2, Spencer Dock, Dublin 1
Drawing Title: Figure 1 – Site Location Plan (copyright of Google)
Date: March 2018

Job Number: 602010

Job Name: City Block 2, Spencer Place, Dublin 1

Drawing Title: Figure 2 – Borehole and Trial Pit Location Plan (source: AECOM)

Date: March 2018

APPENDIX A

Service Constraints

RSK IRELAND LIMITED SERVICE CONSTRAINTS

- 1. This report and the Environmental Site Assessment carried out in connection with the report (together the "Services") were compiled and carried out by RSK Ireland Ltd (RSK) for Spencer Place Development Company Limited (the "client") in accordance with the terms of a contract between RSK and the "client" dated March 2018. The Services were performed by RSK with the skill and care ordinarily exercised by a reasonable Environmental consultant at the time the Services were performed. Further, and in particular, the Services were performed by RSK taking into account the limits of the scope of works required by the client, the time scale involved and the resources, including financial and manpower resources, agreed between RSK and the client.
- 2. Other than that expressly contained in paragraph 1 above, RSK provides no other representation or warranty whether express or implied, in relation to the Services.
- 3. Unless otherwise agreed in writing the Services were performed by RSK exclusively for the purposes of the client. RSK is not aware of any interest of or reliance by any party other than the client in or on the Services. Unless expressly provided in writing, RSK does not authorise, consent or condone any party other than the client relying upon the Services. Should this report or any part of this report, or otherwise details of the Services or any part of the Services be made known to any such party, and such party relies thereon that party does so wholly at its own and sole risk and RSK disclaims any liability to such parties. Any such party would be well advised to seek independent advice from a competent environmental consultant and/or lawyer.
- 4. It is RSK's understanding that this report is to be used for the purpose described in the introduction to the report. That purpose was a significant factor in determining the scope and level of the Services. Should the purpose for which the report is used, or the proposed use of the site change, this report may no longer be valid and any further use of or reliance upon the report in those circumstances by the client without RSK 's review and advice shall be at the client's sole and own risk. Should RSK be requested to review the report after the date of this report, RSK shall be entitled to additional payment at the then existing rates or such other terms as agreed between RSK and the client.
- 5. The passage of time may result in changes in site conditions, regulatory or other legal provisions, technology or economic conditions which could render the report inaccurate or unreliable. The information and conclusions contained in this report should not be relied upon in the future without the written advice of RSK. In the absence of such written advice of RSK, reliance on the report in the future shall be at the client's own and sole risk. Should RSK be requested to review the report in the future, RSK shall be entitled to additional payment at the then existing rate or such other terms as may be agreed between RSK and the client.
- 6. The observations and conclusions described in this report are based solely upon the Services which were provided pursuant to the agreement between the client and RSK. RSK has not performed any observations, investigations, studies or testing not specifically set out or required by the contract between the client and RSK. RSK is not liable for the existence of any condition, the discovery of which would require performance of services not otherwise contained in the Services. For the avoidance of doubt, unless otherwise expressly referred to in the introduction to this report, RSK did not seek to evaluate the presence on or off the site of asbestos, electromagnetic fields, lead paint, heavy metals, radon gas or other radioactive or hazardous materials.
- 7. The Services are based upon RSK's observations of existing physical conditions at the Site gained from a walk-over survey of the site together with RSK's interpretation of information including documentation, obtained from third parties and from the client on the history and usage of the site. The Services are also based on information and/or analysis provided by independent testing and information services or laboratories upon which RSK was reasonably entitled to rely. The Services clearly are limited by the accuracy of the information, including documentation, reviewed by RSK and the observations possible at the time of the walk-over survey. Further RSK was not authorised and did not attempt to independently verify the accuracy or completeness of information, documentation or materials received from the client or third parties, including laboratories and information services, during the performance of the Services. RSK is not liable for any inaccurate information or conclusions, the discovery of which inaccuracies required the doing of any act including the gathering of any information which was not reasonably available to RSK and including the doing of any independent investigation of the information provided to RSK save as otherwise provided in the terms of the contract between the client and RSK.
- 8. The intrusive environmental site investigation aspects of the Services is a limited sampling of the site at pre-determined borehole and soil vapour locations based on the operational configuration of the site. The conclusions given in this report are based on information gathered at the specific test locations and can only be extrapolated to an undefined limited area around those locations. The extent of the limited area depends on the soil and groundwater conditions, together with the position of any current structures and underground facilities and natural and other activities on site. In addition chemical analysis was carried out for a limited number of parameters [as stipulated in the contract between the client and RSK] [based on an understanding of the available operational and historical information], and it should not be inferred that other chemical species are not present.
- 9. Any site drawing(s) provided in this report is (are) not meant to be an accurate base plan, but is (are) used to present the general relative locations of features on, and surrounding, the site. Features (boreholes, trial pits etc) annotated on site plans are not drawn to scale but are centred over the approximate location. Such features should not be used for setting out and should be considered indicative only.

APPENDIX B

AECOM Ground Conditions Report

AECOM

Ground Conditions Report – Generic Quantitative Risk Assessment

Site at the Junction of Sherriff Street Upper and New Wapping Street

City Block 2, Spencer Dock, Dublin 1 21 September 2015 47092981

Prepared by: AECOM

DOCUMENT PRODUCTION / APPROVAL RECORD							
Issue No. 1	Name	Signature	Date	Position			
Prepared by	Brian Duggan	Krian Doggan	17 February 2016	Senior Environmental Scientist			
Checked by	Sinead Fitzpatrick	América fitzpaltil	17 February 2016	Principal Environmental Scientist			
Approved by	Sinead Fitzpatrick	América fitzpalti	17 February 2016	Principal Environmental Scientist			

Project Name:

Ground Conditions Report and Generic Quantitative Risk Assessment

Sub Title:

City Block 2 - Site at the junction of Sherriff Street Upper and New Wapping

Job No.

47092981

Status:

Issue 1

Issued by:

AECOM Infrastructure & Environment Ireland Limited 4th Floor, Adelphi Plaza Adelphi Centre Georges Street Upper Dun Laoghaire Co. Dublin

Tel: 00 353 (0)1 2383100 www.aecom.com

DOCUMENT ISSUE RECORD		
Issue No.	Date	Details
0	21 September 2015	Draft
1	17 February 2016	Issue 1

Limitations

AECOM Infrastructure & Environment Ireland Limited ("AECOM") has prepared this Report for the sole use of Hines Ireland ("the Client") in accordance with the Agreement under which our services were performed (Proposal no. P864699, dated 10 February 2015). No other warranty, expressed or implied, is made as to the professional advice included in this Report or any other services provided by AECOM. This Report is confidential and may not be disclosed by the Client nor relied upon by any other party without the prior and express written agreement of AECOM.

The conclusions and recommendations contained in this Report are based upon information provided by others and upon the assumption that all relevant information has been provided by those parties from whom it has been requested and that such information is accurate. Information obtained by AECOM has not been independently verified by AECOM, unless otherwise stated in the Report.

The methodology adopted and the sources of information used by AECOM in providing its services are outlined in this Report. The work described in this Report was undertaken between May and August 2015 and is based on the conditions encountered and the information available during the said period of time. The scope of this Report and the services are accordingly factually limited by these circumstances.

Where assessments of works or costs identified in this Report are made, such assessments are based upon the information available at the time and where appropriate are subject to further investigations or information which may become available.

AECOM disclaim any undertaking or obligation to advise any person of any change in any matter affecting the Report, which may come or be brought to AECOM' attention after the date of the Report.

Certain statements made in the Report that are not historical facts may constitute estimates, projections or other forward-looking statements and even though they are based on reasonable assumptions as of the date of the Report, such forward-looking statements by their nature involve risks and uncertainties that could cause actual results to differ materially from the results predicted. AECOM specifically does not guarantee or warrant any estimate or projections contained in this Report.

Unless otherwise stated in this Report, the assessments made assume that the sites and facilities will continue to be used for their current purpose without significant changes.

Copyright

© This report is the copyright of AECOM Ireland Limited a wholly owned subsidiary of AECOM. Any unauthorised reproduction or usage by any person other than the addressee is strictly prohibited.

1.	INTRODUCTION	1
2.	OBJECTIVE	1
3.	SCOPE OF WORK	1
3.1 3.2 3.3 4.	Task 1 - Preliminary Risk Assessment Task 2 - Intrusive Site Investigation Task 3 - Generic Quantitative Risk Assessment SITE ENVIRONMENTAL SETTING	1 2 2 3
4.1 4.2 4.3 4.4 5.	Site Description Adjacent Land Use Site Environmental Setting Site History PRELIMINARY CONCEPTUAL SITE MODEL	3 3 5 7
5.1 5.2 5.3 5.4 5.5 6.	Pollutant Linkage Concept Potential Sources Potential Receptors Potential Pathways Summary of Viable SPR Linkages PREVIOUS ENVIRONMENTAL INVESTIGATIONS	7 8 8 9 10
6.1 6.2 6.3 7.	Completed Investigation Work Site Investigation Findings Pumping Station Excavation SITE INVESTIGATION METHODOLOGY	10 10 11 <mark>11</mark>
7.1 7.2 7.3 7.4 7.5 8.	Health and Safety Trial Pitting Borehole Drilling & Groundwater Well Installation Soil Sampling Groundwater Monitoring SITE INVESTIGATION FINDINGS	11 12 12 12 13 14
8.1 8.2 8.3 <mark>9</mark> .	Site Geology Site Hydrogeology Field Observations GENERIC QUANTITATIVE RISK ASSESSMENT	14 14 15 <mark>15</mark>
9.1	Screening Criteria	15
9.1.1	Soil Screening Criteria	16
9.1.2	Soil Leachate Screening Criteria	16
9.1.3	Groundwater Screening Criteria	16
9.2 9.3 10.	Soil Analytical Results Groundwater Analytical Results UPDATED CONCEPTUAL MODEL	17 18 <mark>19</mark>
10.1 10.2 10.3 10.4 11	Sources Potential Receptors Potential Pathways Risks Assessment Procedure FINDINGS AND CONCLUSIONS	19 19 20 20 23
1.1.1.1		~ .

TABLE OF CONTENTS

FIGURES

TABLES

Appendix A – Trial Pit Logs

Appendix B – Borehole Logs

Appendix C – Laboratory Reports - Soil Samples

Appendix D – Laboratory Reports - Groundwater Samples

EXECUTIVE SUMMARY

AECOM infrastructure and Environment Ireland Limited (AECOM) completed this Ground Conditions Report and Generic Quantitative Risk Assessment (GQRA) for the proposed development site (subject area) on the eastern half of City Block 2, in order to establish current environmental conditions of soil and groundwater underlying the subject area and identify potential significant risks to future site users or environmental receptors following the proposed site redevelopment.

This report considers the eastern portion of City Block 2, AECOM understands that the northern portion of the site will be developed with a multi-storey residential building (Block 2B). This will include a single level basement which will have a formation level of approximately 2.75m below existing ground level (-0.25m Ordnance Datum (OD)) with a basement floor level of 0.5m OD. AECOM understands that a secant or sheet pile wall is to be constructed around the perimeter of the site.

Development plans for the southern half of the site are yet to be finalised but it is assumed that a basement with a similar layout and depth would be excavated in the southern portion of the site when developed.

A summary of the desktop review is detailed below:

- Surrounding land use includes a mixture of commercial and residential properties with terraced residential houses located on the south-eastern corner of City Block 2.
- Historical maps identify that the site has been relatively undeveloped, when compared with surrounding sites, which had extensive industrial uses, but has (at times) been used as a timber yard, as cattle pens, and for storage of containers/freight. Based on the known site history, there is considered to be a potential for soil and groundwater contamination associated with its former uses, that of neighbouring sites and with importation of contaminated fill material from industrial sources during reclamation.
- The closest surface water is the River Liffey, which is located approximately 155m south of the site. The bedrock aquifer beneath the site is classified as a 'LI- Locally important aquifer' although there are no source protection zones or known groundwater abstractions wells within a 1km radius of the site.

AECOM completed an intrusive site investigation at the site between May 2015 and August 2015. The investigation involved trial pit excavation, borehole drilling, monitoring well installation, soil sampling and groundwater sampling. A GQRA was completed based on data from this site investigation; a summary of the GQRA findings is detailed below:

- A general summary of the geological profile encountered during this site investigation consisted of concrete or hard-core hard standing to a depth of approximately 0.2m bgl, underlain by made ground which contained frequent clinker and ash to a depth of approximately 2.6m bgl which was in turn underlain by natural silt to a depth of approximately 3.8m bgl. The silt was underlain by sand and gravel to a depth of approximately 8.2m bgl at which point stiff clay was encountered.
- Soil analytical results from below 2.75m bgl (-0.25m OD), which are considered representative
 of soil likely to remain in-situ following redevelopment work, were considered as part of this
 assessment. No exceedances of the Stage 2 Generic Acceptance Criteria GAC were detected
 for hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls
 (PCBs), semi volatile organic compounds (SVOCs). Metal concentrations in samples from
 below -0.25m OD are generally below the Stage 2 GAC protective of human health, but
 exceedances of the Stage 2 GAC were detected for arsenic, cadmium, copper and lead in a
 number of soil sample, asbestos in one soil sample and Volatile Organic Compounds (VOCs)
 (chloromethane and vinyl chloride) in two soil samples.
- Groundwater analytical results for hydrocarbons, metals, PAHs, SVOCs and VOCs were all less than the GAC protective of human health, indicating no significant risk to human health from these parameters.

 Groundwater analytical results for hydrocarbons, PAHs and VOCs were all less than the GAC protective of controlled waters but a small number of metals parameters exceeded the GAC, including arsenic and zinc.

Overall, the site was found to be typical of brownfield sites within this area of the North Dublin Docklands. It appears that the made ground beneath the site is composed of poor quality fill material that contains a number of contaminants at concentrations in excess of the GAC protective of human health for a residential end use scenario. The contamination encountered appears to be historic in nature and is likely to be associated the poor quality of fill material used in the reclamation of the site, or in the case of hydrocarbons and PAHs, associated with historic uses of the site and the surrounding area.

Concentrations of TPH, PAHs and metals were significantly higher in the near surface made ground than were detected in the underlying silt/clay/gravel. Concentrations of these parameters in groundwater were generally not significantly elevated (with the exception of metals).

The construction of a basement at the site will involve excavation of soil to a depth of approximately 2.75m below existing ground level (-0.25m OD) and installation of a pile wall around the vicinity of the site. This will remove the majority of impacted made ground and overburden from the site, leaving predominantly natural soil in-situ. As the site is to be covered by the building footprint, hard standing or imported fill the pathways for exposure to future site users to contamination contained within the underlying soil are extremely limited and are confined to the vapour migration pathway. Given that slightly elevated concentrations of volatile contaminants (chloromethane and vinyl chloride) were only detected in two soil samples in excess of the Stage 2 GAC the.potential risk from vapour intrusion in residual soils is considered low and ventilation installed in basements as part of the current design further reduce the risks. Therefore no remedial action is required but it is recommended that the building design minimise service penetrations through foundation and/or ensure these are adequately sealed to minimise ingress of malodours or vapours.

Exceedances of the GAC protective of controlled water were detected in all three groundwater samples; exceedances were confined to a small number of metals including arsenic and zinc. Excavation of impacted made ground and installation of a pile wall around the site will remove the principal source of metals within groundwater and limit horizontal migration of groundwater, thus reducing risks posed to underlying groundwater or to nearby surface water receptors.

It is expected that risks to off site residents and construction workers during construction works at the site will be suitably mitigated with the implementation of robust Environmental Control Measures (i.e. dust suppression, wheel washes) and the use of appropriate Personal Protective Equipment (PPE) by construction workers.

1. INTRODUCTION

AECOM Infrastructure & Environment Ireland Limited (AECOM), is pleased to present this Ground Conditions Report and Generic Quantitative Risk assessment (GQRA) to David Hughes and Luke Charleton of Ernst & Young Joint Receivers, acting for Spencer Dock Development Company Ltd. (In Receivership and Liquidation) and Querida Environmental Ltd (in Receivership) of a site at the junction of North Wall Quay and New Wapping Street, Spencer Dock, Dublin 1 (the site).

This report considers the eastern portion of City Block 2, the location of which is presented in Figure 1. The existing site layout presented in Figure 2. AECOM understands that the northern portion of the site will be developed with a multi-storey residential building (Block 2B). This will include a single level basement which will have a formation level of approximately 2.75m below existing ground level (-0.25m Ordnance Datum (OD)) with a basement floor level of 0.5m OD. AECOM understands that a secant or sheet pile wall is to be constructed around the perimeter of the site.

Development plans for the southern half of the site are yet to be finalised but AECOM understand that they will also consist of residential development (Block 2D), which will also have a single story basement with a formation level of approximately 2.75m below existing ground level (-0.25mOD).

2. OBJECTIVE

The objective of this assessment is to establish current environmental conditions of soil and groundwater underlying the site. The report includes a GQRA which will identify potential significant risks, if any, to future site users or environmental receptors following the proposed site redevelopment. The assessment also outlines suitable remedial measures where significant risks are identified.

3. SCOPE OF WORK

In order to achieve the objective of this report the following tasks were completed in general accordance with the UK Environment Agency/DEFRA publication Model Procedures for the Management of Land Contamination (CLR11)¹:

- Task 1 Preliminary Risk Assessment (PRA);
- Task 2 Intrusive site investigation; and
- Task 3 Generic Quantitative Risk Assessment (GQRA).

3.1 Task 1 - Preliminary Risk Assessment

In order to complete the PRA AECOM undertook an assessment of the environmental setting of the site and surrounds by completing;

- An assessment of the environmental setting of the site and surrounds by reviewing relevant geological, hydrogeological and topographical maps;
- Review of previous environmental reports pertaining to the site or nearby sites; and
- A review of the site history and that of the surrounding area based on available historical maps and aerial photographs.

The sources of publicly available information reviewed for this report include:

- Geological Survey of Ireland (GSI) Groundwater Web Maps (http://www.gsi.ie);
- Ordnance Survey Discovery Series maps;

¹ UK DEFRA and EA, 2002, CLR 11 - 'Model Procedures for the Management of Land Contamination'

- Ordnance Survey Historical maps, available online (<u>http://www.osi.ie</u>);
- Trinity College Glucksman Historical Map Library; various maps consulted;
- Available aerial photography, available online (http://www.osi.ie);
- Environmental Protection Agency online maps (http://www.epa.ie/);
- Office of Public Works (OPW) Flood Maps (www.floodmaps.ie); and
- National Parks and Wildlife Service (NPWS) (www.npws.ie/en/).

3.2 Task 2 - Intrusive Site Investigation

Following the completion of the PRA, an intrusive site investigation was completed between May and August 2015. The investigation work consisted of the following:

- Site walkover to mark out proposed trial pit and borehole locations;
- Excavation of 11 trial pits to a maximum depth of 4.5m below ground level (bgl);
- Drilling of six boreholes to a maximum depth of 13.7m bgl;
- Installation of groundwater monitoring wells in all boreholes;
- Collection of soil and groundwater samples from trial pits and boreholes;
- Collection of groundwater samples from monitoring wells;
- Laboratory analysis of soil and groundwater samples; and
- Completion of topographic survey of wells.

3.3 Task 3 - Generic Quantitative Risk Assessment

In accordance with the guidance presented in CLR 11 for contaminated land risk assessment, soil and groundwater laboratory data were initially compared with generic assessment criteria (GAC). GAC are conservative screening criteria protective of human health (site users) and controlled waters (groundwater and the River Liffey); for a given contaminant.

AECOM considers that the use of GAC for a screening assessment is consistent with the principles of human health and controlled waters protection in Irish EPA, UK DEFRA and UK Environment Agency guidance.

4. SITE ENVIRONMENTAL SETTING

4.1 Site Description

City Block 2 is situated at the junction of Sherriff Street Upper and New Wapping Street, Spencer Dock, Dublin 1. The site is located to the east of City Block 2 at national grid reference O 176 346 and covers an area of approximately 7,500m² (0.75 hectare) excluding a Dublin City Council sewage pumping station, which is located in centre of the site. The site is bound by Sheriff Street Upper to the North, New Wapping Street to the East and Mayor Street to the south.

The majority of the site is currently vacant; a construction compound occupies a portion of the site on a temporary basis. There are a number of occupied terraced residential properties in the southeast corner of City Block 2; however these are located outside the site boundary.

Existing ground levels at the site range from 2.096m OD to 2.79m OD with a mean site datum of circa 2.5m OD. The proposed development will include a single level basement constructed over the entire footprint of the northern portion of the site, which will have a formation level of approximately 2.75m below existing ground level (-0.25m Ordnance Datum) and a basement floor level of 0.5m OD. The propsed site layout is presented in Figure 4. It is assumed that a basement with a similar layout and depth would be excavated in the southern portion of the site when developed.

4.2 Adjacent Land Use

ADJACENT LAND USE				
North	The site is bound by Sheriff Street Upper, with an office/residential apartment complex and terraced housing beyond. The closest residential properties are approximately 20m north of the site.			
South	A number of terraced residential properties are located on the south eastern site boundary. Mayor Street and the Red Luas line form the southern site boundary, with the currently undeveloped City Block 7 further to the south. The closest residential properties are located adjacent on the southern site boundary.			
East	New Wapping Street forms the eastern site boundary, with a number of terraced residential properties located on the eastern side of the street. City Block 3 is located further to the east of the site and includes a number of disused commercial/industrial buildings and warehouses. The closest residential properties are approximately 20m east of the site.			
West	The currently undeveloped western half of City Block 2 is immediately west of the site. An access road to apartment complexes is located beyond with a number of residential apartment complexes located between the road and Spencer Dock. The closest residential properties are approximately 200m west of the site.			

Land use adjacent to the site is summarised in the table below:

4.3 Site Environmental Setting

A summary of the site's environmental setting and that of the surrounding area is presented in the table overleaf.

ENVIRONMENT	AL SENSITIVITY AND SETTING
Surface of site	The site is predominantly unsurfaced, or poorly surfaced with stone hardstanding. Approximately 20% is covered by concrete/asphalt access roads and car parking or building footprint.
Topography	The topography of the site is generally flat, with a slight gradient towards the south. Existing ground levels are approximately 2.5m above Ordnance Datum (AOD) at the eastern boundary. The topography of the surrounding area slopes gently to the south towards the River Liffey.
Geology	The Teagasc subsoil data maps on the GSI website identify the subsoil beneath the site as "Made Ground". Bedrock beneath the site is identified as "Calp", which consists of dark grey to black limestone & shale.
	The regional groundwater flow direction is expected to be to the south on the outgoing tide towards the River Liffey (155m south of the southern site boundary). Given the proximity of the Liffey, there may be a slight tidal influence on groundwater levels.
Hydrogeology and Aquifer	The bedrock aquifer underlying the site is classified by the GSI as a 'Locally Important Aquifer', that is "moderately productive only in local zones".
Classification	The assigned groundwater vulnerability for the site is assigned as 'Low '. A gravel aquifer is not indicated to be underlying the site on the National Draft Gravel Aquifer Map.
	The GSI database details two groundwater abstraction wells close to the northwest site boundary, installed to depths of 6.5m and 7.8m with well use recorded as 'other'.
	The probability of well in the area being sunk into the limestone aquifer for potable water is low, due to the saline intrusion from the tidal River Liffey into the bedrock groundwater and the availability of mains water within Dublin City Centre. City Block 2 is not located within a groundwater public water supply source protection zone.
Surface Water and Flood Risk	The nearest surface water body to City Block 2 is the River Liffey, located approximately 155m to the south. The Liffey flows in an easterly direction towards Dublin Bay, and is tidal and brackish in the vicinity of the site. The EPA lists the water quality of the River Liffey upstream of Dublin City Centre as 'Q3-4 Moderate Quality'. The tidal stretch of the River Liffey in the vicinity of City Block 2 is classified as 'Unpolluted' and is classified as 'at risk of not achieving good status'
	The Royal Canal is located approximately 240m west of the site. The Royal Canal is hydraulically connected with the River Liffey in the area of the site, but has poor hydraulic connection with groundwater as its base is shallow, and is typically lined with clay.
	According to the Office of Public Works flood maps resources, there is one record of flooding within the local area, which was a tidal flood event in February 2002. The OPW flood maps show that this affected an area from Spencer Dock approximately 50m from the western site boundary. The OPW records state that "The Local Authority who provided this Flood Information Item wishes to point out that a number of defence assets were put in place since one or more of the flood events".
	Dublin City Council identified that the area in which City Block 2 is located is "at risk but protected" (from flooding). AECOM understand that flood protection measures were constructed at Spencer Dock between 2005 and 2008. Flood protection is also incorporated into building design in the area with a minimum podium ground floor level of 4.0m OD being a requirement in the area.
Other	One EPA Industrial Emissions (IE)-licenced facility was identified on the north side of the River Liffey within 1km of the site. This refers to Brooks Thomas (IE Reg No. P0345-01), which was a timber treatment facility located on City Block 7, which is approximately 50m southeast of the site. AECOM understand that this facility is no longer active but that the licence has not been surrendered.
	Four licensed waste facilities are located close to the north quays of the Liffey in the vicinity of the site.
	The only protected areas specified by the National Parks and Wildlife Service within 1km of the site are the Royal Canal to the west of the site and the Grand Canal Dock located

ENVIRONMENTA	AL SENSITIVITY AND SETTING
	south of the River Liffey, both of which are Proposed Natural Heritage Areas (002103 and 002104) – with protected species including Opposite-leaved Pond Weed (<i>Groenlandia Densa</i>). Radon maps available on the EPA web viewer indicate that the site is in an area where <1% of buildings in the 10-kilometre grid in which the site lies are estimated to be above
	the reference level, indicating a Low risk associated with radon gas. Under current building regulations, any building constructed on or after 1 July 1998 should incorporate radon protection measures and these regulations will be applicable to buildings constructed at the site.
Sensitive Receptors	 Sensitive receptors identified within 1km of the site include: Residential terraced houses located on Mayor Street, adjacent to the south-eastern site boundary of City Block 2; Residential terraced houses located on New Wapping Street, approximately 15m east of the site; Residential apartment complex on Spencer Dock, approximately 90m west of the site; Residential apartments and terrace houses located north of Sheriff Street Upper; and River Liffey, located 155m south of the site.
Environmental Sensitivity	The environmental sensitivity of Site is considered to be MEDIUM , given the proximity of residential housing and the River Liffey.

4.4 Site History

A summary of the sites history, and the potential for significant historic contamination associated with on-site and off-site activities, is outlined in the Table below.

SITE HISTORY A	ND POTENTIAL FOR SIGNIFICANT HISTORIC CONTAMINATION
History of Site	Historical maps available from the Trinity Map Library and on the OSI website were reviewed in order to identify potential historical contamination sources on or near the site.
	The site was formerly part of the Liffey Estuary, which was reclaimed following construction of North Wall Quay. The Charles Brookings map of 1728 shows the north side of the River Liffey to be walled, but the map states that the site area is 'as yet overflowed by ye tide'. The site is shown on Rocques map of 1757 as being part of the North Lotts, which consist of agricultural plots. The Larcom map of Dublin from 1837 shows that the site is still undeveloped, but there has been development further west of the site, with construction of the Customs House and associated Dock.
	Historical mapping dating from 1829-1841 (6 inch mapping series) show that City Block 2 is bisected in a north south direction by Wapping Street. The majority of the site was undeveloped land, but a number of residential properties are located off Sheriff Street in the northeast corner of the site. A 'Vitriol works' (sulphuric acid works) is present on City Block 7 immediately south of Mayor Street and a 'Vinegar Works' is located approximately 60m west of the site.
	Mapping from 1875 shows that the site was still largely undeveloped, but shows that the terraced residential properties, which are currently present in the southeast corner of City Block 2, have been constructed.
	There has been significant development on City Block 7 to the south, with a 'Chemical Works and Iron Works' shown. A railway station 'London and North Western Railway Station' has been constructed on the western half of City Blocks 2 and 7, immediately west of Wapping Street, which truncates Mayor Street to a cul-de-sac. Residential properties and a church are shown north of the site on the northern side of Sheriff Street Upper.
	Historical maps dating from 1907 (25 inch to the mile) indicate Wapping Street to the west of the site has been removed and replaced with "New Wapping Street' which forms the current eastern site boundary. The site has been developed as a 'Timber Yard'. The station to the east has been renamed 'North Wall Station' and a number of 'cattle pens' are shown.

SITE HISTORY A	ND POTENTIAL FOR SIGNIFICANT HISTORIC CONTAMINATION
	Residential properties, which still stand, have been constructed to the east of New Wapping Street' and City Block 3 has been developed as bonded stores and industry, including a vinegar works, charcoal works, saw mills and smithy. The chemical works on City Block 7 to the south of the site appears to have been demolished and have been replaced with a Hotel, which is currently present, and a post office.
	Mapping from 1935 no longer shows the timber yard and the only structure marked on the site is a tank on the western site boundary, with the houses in the southeast corner remaining. The layout of surrounding site is broadly similar to previous mapping, with the railway station present to the west and cattle pens now shown on City Block 7 to the south. A number of industries, including saw mills, printing works and iron works, are shown east of New Wapping Street. A soap works is located to the northeast of the site, north of Sheriff Street.
	The Goade Fire Plans from 1947 and 1961 do not cover the site itself but show sites to the south. Immediately south, City Block 7 is still occupied by cattle pens, a hotel and the post office is now shown as a 'Sailors Club'. To the southeast, there is a timber yard, saw mills, bonded stores, tile yard and cattle pens.
	Dublin Corporation Planning Base Map from circa 1985 shows the site to be largely free from buildings, with the surrounding area similar to that shown in the 1935 mapping.
	Aerial photographs from 1995 and 2000 show the site to be free from buildings and it appears to be used for storage of shipping containers or freight associated with the railway. Surrounding land use is similar to mapping from 1985, with the railway to the west, industry/commercial facilities to the east, residential to the north and largely undeveloped to the south.
	Aerial photographs from 2005 show significant alterations to land to the west, with the railway tracks and associated infrastructure between the site and Spencer Dock removed. The site itself is now vacant and no longer appears to be used for storage of containers/freight. Land to the north, east and south is similar in layout to previous years.
Potential On- site Sources of	Historical maps identify that the site has been relatively undeveloped, when compared with surrounding sites, but has (at times) been used as a timber yard, as cattle pens, and for storage of containers/freight.
Contamination	Based on the known site history, there is considered to be a potential for soil and groundwater contamination to be present beneath the site associated principally with its use as a timber yard and freight yard. Based on the findings of environmental assessments completed by AECOM on other sites in the North Wall area, made ground may have been imported onto the site from nearby industrial sources during reclamation, which could contain elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) and metals.
Potential Off- Site Sources of Contamination	The surrounding area has been used for multiple industrial uses in the past and it is considered that several potential sources of off-site contamination may be present. These include the railway station and railway sidings to the west of the site, vinegar and vitriol works to the east and south, chemical works to the south, timber works to the north and east, iron works to the east, and soap works to the northeast. Potential contaminants associated with these works include, hydrocarbons, PAHs, metals, acids, bases and asbestos.
Potential for Contamination	Potential for historical contamination associated with onsite activities is considered to be MODERATE , while that associated with off-site activities is considered to be HIGH .

5. PRELIMINARY CONCEPTUAL SITE MODEL

A Conceptual Site Model (CSM) has been developed and is described in this section, identifying contaminant sources, contaminant migration pathways and potential receptors for the site. The CSM was developed based on the desktop study.

5.1 Pollutant Linkage Concept

In the context of land contamination, there are three essential elements to any risk:

- **A source** a substance that is in, on or under the land and has the potential to cause harm or to cause pollution of controlled waters;
- A receptor in general terms, something that could be adversely affected by a contaminant, such as people, an ecological system, property, or a water body; and
- A pathway a route or means by which a receptor can be exposed to, or affected by, a contaminant.

Each of these elements can exist independently, but they create a risk only where they are linked together, so that a particular contaminant affects a particular receptor through a particular pathway. This kind of linked combination of contaminant–pathway–receptor is described as a pollutant linkage. The CSM was developed to describe viable source-pathway-receptor linkages for the site.

The desktop study was used to conceptualise the contaminant source areas as well as the pathways and receptors.

5.2 Potential Sources

The findings of the desktop study indicate that there are a number of potential sources with associated Potential Contaminants of Concern (PCOCs) at the site as outlined below.

SUMMARY OF POTENTIALLY SIGNIFICANT SOURCES OF CONTAMINATION						
Potential Source	Contaminants of Potential Concern	Source Area				
Reduced quality made ground and overburden potentially contaminated with a variety of organic and inorganic contaminants.	 Hydrocarbons Polycyclic aromatic hydrocarbons Volatile Organic Carbon Semi Volatile Organic Carbons Metals Polychlorinated biphenols Acids and bases Asbestos 	Historical maps identify that the site has been relatively undeveloped when compared with surrounding sites, but has, at times, been used for a timber yard, cattle pens, and storage of containers/freight. The surrounding area has been used for multiple industrial uses in the past and it is considered that several potential sources of off-site contamination may be present. These include the railway station and railway sidings to the west of the site, vinegar and vitriol works to the east and south, chemical works to the south, timber works to the north and east, iron works to the northeast.				
Reduced quality perched groundwater and bedrock groundwater potentially containing a variety organic and inorganic contaminants.	 Hydrocarbons Polycyclic aromatic hydrocarbons Volatile Organic Carbon Semi Volatile Organic Carbons Metals Polychlorinated biphenols 					

5.3 **Potential Receptors**

Human Health

The on-site human health receptor is considered to be residential (without plant uptake) as, AECOM understand that the subject area is to be redeveloped as predominantly high density residential units. Off-site receptors are also considered to be residential, due to the proximity of terraced residential housing at the southeast corner of City Block 2 and to the east of New Wapping Street.

It is expected that risks to off site residents and construction workers during construction works at the site will be suitably mitigated with the implementation of robust environmental control measures (i.e. dust suppression, wheel washes, etc.) and the use of appropriate personal protective equipment by construction workers. Further comment on the risks to construction personnel during the construction phase is beyond the scope of this report.

Controlled Waters

The following potential controlled waters receptors were identified given the environmental setting of the site:

Water Environment Receptors	Present (Y/N)	Potable Supply (Y/N)	Description/Comments
Groundwater abstraction within 500m of the site.	Ν	No	There are no known groundwater abstractions within 500m of the site. The probability of wells in the area being sunk into the limestone aquifer for potable water is low due to the saline nature of the water, and the availability of mains water within Dublin City Centre.
Surface water body within		No	River Liffey is located approximately 155m south of the site.
500m of the site in direct hydraulic connection with groundwater from the site.	Y	No	Royal Canal and Spencer Dock located 240m west of the site (not considered as a receptor due to poor hydraulic connection with groundwater).
Groundwater in bedrock beneath the site.	Y	Unlikely	The bedrock aquifer underlying the site is classified by the GSI as a 'Locally Important Aquifer', that is "moderately productive only in local zones", however is known to be affected by saline intrusion from the tidal River Liffey.
Groundwater in superficial Y deposits beneath the site		No	The superficial deposits at the site are not considered to be an aquifer.

5.4 Potential Pathways

It is assumed that future redevelopment of the site is likely to include construction of basement car parking over a large proportion of the site and/or cover with hard standing or imported fill materials covering the remainder (1m in depth, in order to break pathway with existing soils). The proposed development will itself therefore limit the pathways for exposure of site users to contamination contained within the underlying fill material; i.e. soil and dust ingestion, consumption of vegetables, dermal contact, inhalation of fugitive dust pathways are not active except for the duration of construction works.

Exposure pathways are therefore limited and are confined to the vapour migration pathway. The following potential pathways to human health and controlled waters receptors are considered viable:

Potential Pathways					
Pathways to human health receptors in a high density residential scenario	 Vapours - migration of vapours through Made Ground to above ground buildings. 				
Pathways to controlled waters receptors	 Leaching of CoPC from soil into perched groundwater followed by vertical migration. Potential lateral migration of impacted groundwater. 				

5.5 Summary of Viable SPR Linkages

The elements of the CSM that form viable source-pathway-receptor (SPR) linkages may be summarised as follows:

RECEPTOR	SOURCE	PAT	PATHWAY							
		1) Soil and dust ingestion	2) Consumption of vegetables	3) Dermal contact	4) Inhalation of fugitive dust	5) Ingestion of groundwater	6) Inhalation of vapours	7) Leaching from unsaturated zone	8) Vertical groundwater migration	9) Horizontal groundwater migration
Residential site	Soils						✓			
users (without plant uptake)	Groundwater						~			
Croundwater	Soils							~		
Groundwater	Groundwater								✓	~
Surface Water	Soils							✓		
	Groundwater									✓
✓ = Pathway present Blank = no pathway										

6. PREVIOUS ENVIRONMENTAL INVESTIGATIONS

A number of phases of site investigation work have been completed at the site, as outlined in the sections below.

6.1 Completed Investigation Work

A preliminary assessment of environmental soil and groundwater quality was carried out in March/April 2003² within "Block M & N" which form the northern third of the site and the "Pump Station" redevelopment footprint, which is located to the centre of the site. This investigation comprised three shell and auger boreholes (MW1, MW5 & MW6).

Environmental soil samples were collected at each of the investigation points at one metre depth intervals and selected samples were submitted for analysis. Groundwater samples were also collected from a series of monitoring wells installed across the site and samples were submitted for analysis.

A more detailed site investigation was completed in September 2005³ to assess the environmental quality of shallow soil in the northern half of City Block 2 to determine suitable soil disposal/transfer routes for a proposed site-wide excavation. This investigation comprised excavation of 22 trial pits, to a maximum depth of 4.0 metres below ground, following a grid pattern across the site. Samples from trial pits were submitted for laboratory analysis.

Further environmental investigation and sampling work was undertaken at the site as part of the Pumping Station redevelopment work⁴, which was completed between August 2011 and February 2012.

6.2 Site Investigation Findings

The top-most layer encountered across the site comprised made ground, consisting of coarse sand, fine to medium gravel and clay. Locally, cobbles and debris such as ash, bricks and concrete were found within this material. The thickness of the made ground generally varied between 2.0m and 2.5 m across the site; however, in a number of trial pits in the southeast corner the made ground was deeper with thicknesses of greater than 3.0m being observed.

In the boreholes drilled during the preliminary investigation in 2003, made ground thicknesses of up to 4.8m (at MW5) were recorded. It is possible that there are one or more localised depressions in the made ground/alluvial silt interface across the site, as the made ground thicknesses measured in three trial pits surrounding MW5 ranged from 1.7 m to 2.7m bgl.

The uppermost natural layer underlying the fill material was a soft sandy peaty silt stratum. This stratum extended below the base of the trial pits where it was observed. Based on borehole logs from the 2003 site investigation, this stratum ranges from 0.3 to 1.0m in thickness across the site, with the underlying stratum consisting of sandy medium to coarse gravel with occasional cobbles. This stratum was encountered at depths of between 4.4m and 5.1m bgl across the site. The thickness of the stratum was variable across the site, with a maximum thickness of 6.0m encountered and a minimum thickness of 4.4m.

² URS, May 2003; Report on Site Environmental Quality of Soil and Groundwater (Buildings M&N site), Spencer Dock Redevelopment, Dublin, Final Report rev 1 45824-023-447.

³ URS, November 2005; Report on Environmental Assessment of Soil Block N, Spencer Dock Redevelopment, Dublin; Final Report rev 1 45078466.

⁴ Spencer Dock Pump Station, Block N, Spencer Dock, Dublin 1 Environmental Close Out Report 15 February 2014 Final Issue No 1 49341885.

The deeper boreholes drilled during the 2003 site investigation terminated in glacial till ('Boulder Clay'), which underlay the gravel unit. The till consisted of a dense clay matrix with rounded cobbles and boulders. The encountered thickness of the glacial till was >1.9m and >3.5m although the thickness was not proven.

No field evidence of contamination was recorded in the borehole or window sampling logs from the 2003 site investigation. During the groundwater sampling process, a slight oily sheen was recorded at two wells.

During the 2005 site investigation, visually observable contaminants included red and white ash and clinker within the made ground stratum of the site. These materials were observed to extend across the entire site with a hydrocarbon-type odour noted in a small number of locations.

Soil analytical results between 0.0m and 4.0m bgl showed significantly elevated concentrations of a number of contaminants including a range of PAH parameters and metal parameters, including arsenic, lead and mercury. Soil analytical results between 4.0m to 13.0m bgl show less contaminated conditions compared to overlying soil.

Groundwater analytical results for hydrocarbons, PAHs and VOCs were all low but elevated concentrations of a number of metals parameters including arsenic, boron, cadmium, chromium, copper, lead, mercury, nickel, selenium and zinc were detected.

6.3 Pumping Station Excavation

The Sewage Pumping Station development included the construction of a pump house, underground storm tank, sewer system and ancillary facilities. In order to provide the required void space for the underground structure together with the need to remediate the site, approximately 11,500 m³ of fill material and natural soils was excavated and appropriately disposed off-site. The final excavation depth varied across the footprint of the pump station development, but beneath the main section, excavation depths of up to 13 m bgl were completed, while more shallow depths (< 5 m bgl) were completed in the eastern and northern portions.

During excavation work, additional soil testing was undertaken to confirm the original waste classification of the soils completed as part of the 2005 investigation work. Upon completion of excavation work, soil validation sampling was completed, with samples taken from the sides and base of the excavation. Seventeen composite soil samples were taken from the walls around the excavation at depths ranging between 1.0-1.5m bgl (made ground) and 4.0- 4.5 m bgl (natural soils) and six composite soil samples were taken from the base of the excavation, at depths ranging between 6m bgl and 13m bgl. Results of the validation sampling indicated that residual soils were unlikely to pose a significant potential risk to controlled waters.

7. SITE INVESTIGATION METHODOLOGY

The intrusive site investigation work was carried out between May 2015 and August 2015. Site investigation work involved trial pit excavation, borehole drilling, groundwater monitoring well installation, soil and water sampling, as well as groundwater monitoring.

7.1 Health and Safety

An AECOM 'Health Safety and Environmental Plan' (HSEP) was completed prior to field works being undertaken at the site. The HSEP described the health, safety and environmental requirements for AECOM project personnel and their contractors' personnel involved in the environmental site investigation works. The HSEP included key project responsibilities, standard safe working practises, general physical and chemical hazards, a detailed hazard risk assessment, requirements for personal protective equipment (PPE), environmental management, decontamination procedures, waste management, management of change and emergency response plans. The HSEP was maintained on site at all times during the investigation, and acted as a live document. All AECOM staff and subcontractors were inducted into the HSEP and were required to sign the HSEP to confirm their understanding of the hazards and mitigation measures.

Prior to commencing intrusive works, all proposed borehole and trial pit locations were identified and agreed with the Client. No non-hazardous or hazardous waste was removed from the site by AECOM or its contractors, other than samples submitted for laboratory analysis.

7.2 Trial Pitting

Trial pitting works were carried out by Irish Geotechnical Site Investigation Limited (IGSL) and were observed and directed by an AECOM field engineer, who logged the arising's in general accordance with the BS 5930:1999 standard, as per AECOM standard field procedure FP02. Figure 3 presents trial pit locations.

Eleven trial pits (TP201 to TP211) were completed within the City Block 2 as part of this phase of investigation. Trial pits were completed to depths of between 3.5m bgl (-1.4m OD) and 4.5m bgl (-2.3m OD)

7.3 Borehole Drilling & Groundwater Well Installation

Six boreholes (BH9 to BH14) were advanced across the site by IGSL using a Dando 2000 cable percussion drilling rig, borehole locations are presented in Figure 3. Boreholes were completed to depths of between 10.5m bgl (-7.8m OD) and 13.7m bgl (-11.3m OD). After completion of drilling, monitoring wells were installed into all six boreholes.

Three boreholes (BH10, BH11 and BH13) were installed with a screened section within near surface soils which consisted predominantly of made ground and silt, the majority of which will be excavated during redevelopment, with a typical response zone between 0.5m bgl and 5.0m bgl.

Three boreholes (BH9, BH12 and BH14) were installed with a screened section within deeper natural sands and gravels which will remain in situ following redevelopment work, with a typical response zone between 5.0m and 8.5m bgl.

Wells comprised a 50 mm diameter high-density polyethylene (HDPE) standpipe, with the exception of BH12 which was installed with a 260mm well screen for use as a pumping well for dewatering during excavation of the basement. The screened section of the wells were surrounded by a washed gravel filter pack, and a bentonite seal was placed above the screened section in order to prevent the creation of a downward pathway for potential surface-derived contamination. Groundwater wells were finished at surface using flush metal covers set in a concrete pad to protect the well and prevent a trip hazard. Only the abstraction well (BH12) was completed with an upright cover.

7.4 Soil Sampling

Soil samples were collected from each borehole and trial pit. Depths of sampling were informed by field observations. Samples were taken at various intervals to provide coverage of material across the site at multiple depths with particular emphasis on soil from beneath -0.25m OD which will remain in-situ following redevelopment work.

The sampled material was visually examined for evidence of contamination and was screened onsite using a photo ionisation detector (PID) for the presence of ionisable gases (indication of the presence of volatile compounds that could be associated with petroleum hydrocarbon impact).

Samples were collected using single use nitrile gloves and were placed into clean, laboratorysupplied containers and dispatched to Jones Environmental Laboratories (JEL) based in Deeside, UK for analysis under contract, accompanied with an appropriate chain of custody and scheduled for the following analysis for GQRA purposes:

SOIL SAMPLES				
Analyte	No. of Soil Samples			
Total Petroleum Hydrocarbon (TPH) Criteria Working Group (CWG) analysis	22			
Benzene, Toluene, Ethyl-benzene & Xylene (BTEX)	22			
Methyl Tert-Butyl Ether (MTBE)	22			
Polycyclic Aromatic Hydrocarbons (PAHs)	22			
Polychlorinated Biphenyls (PCBs)	22			
Total Organic Carbon (TOC)	22			
Volatile Organic Compounds (VOCs)	6			
Semi Volatile Organic Compounds (SVOCs)	6			
Metals (As, Ba, Cd, Cr, Cu, Mo, Hg, Ni, Pb, Se, Sb, Zn)	22			
Asbestos	22			

7.5 Groundwater Monitoring

Groundwater monitoring was completed on 12 August 2015. Prior to groundwater sampling, each monitoring well was gauged using an interface probe to monitor the depth to groundwater and to identify the presence or absence of non-aqueous phase liquid (NAPL). Groundwater was present in all boreholes and NAPL was not detected at any location. In-situ water quality parameters (pH, temperature, dissolved oxygen, electrical conductivity and redox potential) were recorded prior to sampling using a field meter. Monitoring wells were purged prior to sampling until field parameters stabilised so representative groundwater samples were obtained. The wells were sampled using a peristaltic pump and low flow techniques (with tubing dedicated to each well) and samples were placed directly into laboratory-supplied sample containers using single use nitrile gloves.

As part of this assessment, groundwater samples were obtained from the three deeper monitoring wells (BH9, BH12 and BH14). Wells BH9 and BH14 were developed by purging three well volumes so that materials potentially introduced during drilling were removed. Following purging of 250 litres of water from BH12 a grab sample was obtained as this well had been installed with a wide diameter 260mm casing and purging three well volumes was not feasible.

Sample bottles were stored in a chilled cool box and dispatched to Jones Environmental Laboratory in Deeside, UK for analysis, with an appropriate chain of custody documentation. Groundwater samples were analysed for the following parameters:

GROUNDWATER SAMPLES				
Analyte	No. of Water Samples			
Total Petroleum Hydrocarbon (TPH) Criteria Working Group (CWG) analysis	3			
Benzene, Toluene, Ethyl-benzene & Xylene (BTEX) Compounds	3			
Methyl Tert-Butyl Ether (MTBE)	3			
Polycyclic Aromatic Hydrocarbons (PAHs)	3			
Polychlorinated Biphenyls (PCBs)	3			
Volatile Organic Compounds (VOCs)	3			
Semi Volatile Organic Compounds (VOCs)	3			
Metals (As, Ba, Cd, Cr, Cu, Mo, Hg, Ni, Pb, Se, Sb, Zn)	2			

8. SITE INVESTIGATION FINDINGS

8.1 Site Geology

A general summary of the geological profile encountered during this site investigation is presented in the following table.

GEOLOGICAL PROFILE							
Approx Depth (m bgl)	Approx Elevation (m OD)*	Minimum Thickness	Maximum Thickness	Description			
0.0 to 0.2m	2.5 to 2.3	0.1m	0.35m	Concrete or hardcore hard standing			
0.2 to 2.6m	2.3 to -0.1	1.2m	3.6m	Made Ground - typically soft, dark brown, sandy gravelly CLAY, with red brick fragments and building debris at some locations			
2.6m to 3.8m	-0.1 to -1.3	0m	2.4m	Natural Silt - typically soft, dark grey or black, sandy, clayey SILT with shell fragments and occasional gravels			
3.8m to 8.2m	-1.3 to -5.7	2.5m	7m	Natural Sand and Gravel – Medium dense dark grey sub angular SAND and GRAVEL			
>8.2m base not proven	>-5.7	Minimum depth encountered at 5.8m bgl Maximum depth encountered at 10.2m bgl		Natural stiff to hard brown and grey gravelly CLAY			

* Based on an assumed site elevation of 2.5m OD

A detailed description of ground conditions encountered during the investigation is provided in the AECOM trial pit logs and the IGSL borehole logs in Appendices A and B, respectively.

8.2 Site Hydrogeology

Groundwater levels recorded in the onsite wells as presented in the table below.

Groundwater Levels													
Monitoring Well ID	Depth to Groundwater (m btoc)	Well Depth (m btoc)	Screened Depth (m btoc)	Well Elevation, (m OD)	Water Level (m OD)								
BH9	3.305	7.35	5.0-7.0	2.684	-0.621								
BH10	2.76	3.62	0.5-4.0	2.282	-0.478								
BH11	2.82	4.51	1.0-5.0	2.212	-0.608								
BH12	4.105	11.68	5.5-8.5	2.344	-0.861								
BH13	3.34	4.90	1.0-5.0	2.661	-0.579								
BH14	3.100	6.55	4.0-7.0	2.361	-0.739								

• m btoc = meters below top of casing

• m OD = metres Ordnance Datum

• Note: reference point used to measure water levels was top of casing

It is understood that data from surrounding sites indicate a slight tidal influence which is most pronounced immediately adjacent to the River Liffey. An assessment of groundwater flow beneath the site was inconclusive in regards to flow direction, possibly due to the presence of the pumping station and associated piling, installed into boulder clay, at the centre of the site cutting off groundwater within sand/gravel between the north and south of the site. However it is assumed that regional groundwater flow is to the south towards the River Liffey.

8.3 Field Observations

Made ground was present across the site and was encountered to depths ranging between 1.2m bgl (TP207) and 3.6m bgl (BH14). In general, made ground consisted of imported sandy clay fill material with varying contents of red brick, ash and clinker with construction debris including metal and wood throughout.

The following are the significant field observations made during the course of the environmental site investigation:

- Metallic clinker was encountered within made ground in a number of trial pits including TP201, TP202, TP203, TP204, TP205, TP206, TP207, TP210 and TP211;
- A bitumen odour was observed in trial pit TP205 in made ground at depths between 0.65m bgl and 2.1m bgl; and
- Ash was encountered within made ground in a number of trial pits including TP205 and TP209.

Groundwater pumped from the shallow monitoring wells during purging was slightly turbid while that recovered from deeper monitoring wells was generally clear with lower turbidity. No evidence (i.e. odours, staining, or iridescence) was recorded during purging of groundwater monitoring wells.

In-situ groundwater quality parameter readings are presented in Table 5 and summarised below. The measured field parameters can be summarised as follows:

- Temperature readings ranged from 13.5°C (BH14) to 17.4 °C (BH9) which is generally above normal range for Irish groundwater (10 – 12 °C); however temperatures may be elevated due to higher ambient air temperatures (seasonal impacts) and the presence of shallow groundwater;
- Measured pH values in groundwater ranged from 6.39 (BH10) to 6.96 (BH13), indicating groundwater conditions generally within the range for Irish groundwater (pH 6.5 9.5);
- Measured electrical conductivity (EC) values ranged from 2,041 µS/cm (BH9) to 4,118 µS/cm (BH14), which is slightly elevated above the range for typical groundwater indicating potential saline intrusion from the adjacent Liffey estuary;
- Redox potential (Eh) readings ranged between 154.5 mV (BH9) and 288.13 mV (BH14) generally indicating oxidising conditions in groundwater; and
- Dissolved oxygen readings ranged from 0.62 mg/l (BH11) to 6.03mg/l (BH12), indicating slightly anaerobic to aerobic conditions.

9. GENERIC QUANTITATIVE RISK ASSESSMENT

9.1 Screening Criteria

In order to assess the quality of soils on site in terms of human health (future site users) and controlled water (groundwater and the River Liffey) risk assessment AECOM have considered the analytical results from this investigations outlined in Section 7 above.

A risk-based approach has been adopted for the assessment of data from the site. As the proposed end use is high density residential, the data has been assessed against criteria considered appropriate for a future residential end use without plant uptake (it is assumed that fruit/vegetables will not be grown on the site). This is a conservative approach which will also be protective of future commercial end users of the site and will be protective of off-site residential receptors (given the close proximity of residential properties).

Constituent concentrations in soil and groundwater at the site were deemed 'potentially significant' where they exceeded the 'generic' values. These generic values are used for initial assessment of contaminant concentrations for the purpose of providing an initial indication of impacts at a site and

evaluating the compounds that could proceed to a detailed assessment. As such, it should be noted that generic exceedances are not an indication of the requirement for remediation but, rather, an indication of the need for further assessment.

Additionally, where further risk assessment is considered necessary, use of more site-specific information in the assessment can often lead to the conclusion that the observed concentrations are present at levels which represent an acceptable level of risk, considering the actual or proposed end use of a site (although each site assessment has to be considered on an individual basis).

9.1.1 Soil Screening Criteria

AECOM has only considered analytical results from soil samples obtained from below -0.25m OD as soil above this level is earmarked for excavation for future basement construction, and only soil from below -0.25m OD will remain in-situ following redevelopment work.

The soils being removed will be assessed in terms of waste classification, in order to identify an appropriate disposal route. This waste classification report will be completed by AECOM under a separate cover,

The soil analytical data for soils remaining in-situ were compared with AECOM in-house Stage 2 Generic Assessment Criteria (GAC) for residential development (without plant uptake). The GAC are based on a sandy soil which is a conservative option chosen to represent gravels remaining on site following excavation work. The total organic carbon content of between 0.58% and 1.45% reflects the values encountered on site which range from 0.29% to 3.95%, with a mean value of 1.16%. This is also a conservative screening value.

If the concentrations are below the GAC, then the risks to human health are considered negligible. If the concentrations are above the GAC, a potential risk to human health is identified. AECOM considers that the GACs are consistent with the principles of human health protection in Irish Environmental Protection Agency, UK DEFRA and UK Environment Agency guidance.

Total petroleum hydrocarbons have been assessed by assuming an additive toxicological effect for each individual fraction. A hazard quotient (HQ) is calculated for each individual fraction by dividing the fraction concentration by its corresponding GAC. The HQs for each TPH fraction in an individual TPH sample are then summed to calculate the hazard index (HI) for that sample. A HI greater than 1.0 is deemed to indicate a potentially significant risk to human health.

9.1.2 Soil Leachate Screening Criteria

In terms of controlled waters (i.e. the underlying groundwater and nearby surface waters), there is a potential for soils to impact these via leaching. However, estimated soil GACs using a partitioning equation result in theoretical values that are likely to be very conservative. As such, greater reliance is generally placed on measured groundwater results to assess the potential risks to controlled waters in the vicinity of the site as outlined in Section 9.1.3 below.

9.1.3 Groundwater Screening Criteria

This assessment has only considered groundwater results from deeper groundwater monitoring wells (BH9, BH12 and BH14) as these wells are screened with a response zone in natural soils which will remain in situ following basement excavation work. Data from shallow monitoring wells wells (BH10, BH11 and BH13) was collected to represents water that would likely be discharged during dewatering activities in order to support a discharge licence application.

In terms of controlled waters, appropriate generic assessment criteria were selected based on the site's environmental setting. The closest surface water is the River Liffey, which is located approximately 155m south of the site southern boundary.

The bedrock aquifer is classified by the GSI as a 'LI - Locally important aquifer, bedrock which is moderately productive only in local zones'. GSI indicates that there are no source protection zones

within a 1km radius of the site. The probability of well in the area being sunk into the limestone aquifer for potable water is low due to the saline nature of the groundwater, and the availability of mains water within Dublin City Centre.

Based on the above analysis, the River Liffey is considered the most sensitive controlled waters receptor in the vicinity of the site. Accordingly, groundwater analytical data were assessed using the following criteria:

- European Communities Environmental Objectives (Groundwater) Regulations, 2010 (Statutory Instrument No. 9 of 2010);
- European Communities Environmental Objectives (Surface Waters) Regulations, 2009 (Statutory Instrument No. 272 of 2009);
- European Communities Environmental Objectives (Drinking Water) Regulations, 2010 (Statutory Instrument No. 106 of 2007); and
- Environmental Protection Agency's Draft Interim Guidelines Values (IGVs) for the Protection of Groundwater, 2003⁵.

In terms of human health risks, given that groundwater on site is not used for drinking, the principal risk to human health from groundwater is via vapour inhalation. Therefore, groundwater concentrations were compared against residential AECOM GAC derived for the assessment of the vapour inhalation pathway where appropriate (where AECOM GAC are unavailable, groundwater concentrations were compared against UK Drinking Water Standards or World Health Organisation guidelines for Drinking Water). The screening criteria do not provide detailed information on site-specific risks and, in a significant number of circumstances, may be viewed as being overly health protective. Nevertheless, these values are considered to be appropriate for initial screening of site conditions for the protection of human health.

9.2 Soil Analytical Results

Soil analytical results from below -0.25m OD from trial pits are presented in Table 1 while those from boreholes are presented in Table 2 in which they are screened against GAC protective of human health in a residential end use scenario, as outlined in Section 9.1.1 above. Laboratory analytical reports are presented in Appendix C.

Petroleum Hydrocarbons

The petroleum hydrocarbon analysis completed for samples obtained from the site includes Speciated Total Petroleum Hydrocarbons (TPH), BTEX & MTBE.

The petroleum hydrocarbon analytical results for all soil samples were below the Stage 2 GAC protective of human health. Hydrocarbon concentrations were generally less than the laboratory MDL, with a maximum TPH concentration of 498 mg/kg detected. In addition, the additive toxicological effect for each individual fraction was assessed by calculating a Hazard Index for each sample. As the hazard index for all samples was significantly less than 1.0 (max 0.14) there is not considered to be a potentially significant risk to human health.

PAH's

The PAH analytical results for all soil samples were below the Stage 2 GAC protective of human health. PAH concentrations were generally very low, and in many cases less than the laboratory MDL. A maximum total 17 PAH concentration of 15.72 mg/kg was detected.

⁵ Environmental Protection Agency, Towards setting guideline values for the protection of groundwater in Ireland (Interim Report).

Metals (As, Ba, Cd, Cr, Cu, Mo, Hg, Ni, Pb, Sb, Zn)

Metal concentrations in samples from below -0.25m OD are generally below the Stage 2 GAC protective of human health, with all metal concentrations in 8 of the 22 samples below the Stage 2 GAC. Exceedances of the Stage 2 GAC were detected for arsenic, cadmium, copper and lead in a number of samples as summarised in the table at the end of this section.

Polychlorinated biphenyls (PCB's)

The analytical results for PCB's in all soil samples were below the Stage 2 GAC protective of human health and in all cases were less than the laboratory MDL.

VOCs and SVOCs

VOC and SVOC concentrations in samples from below -0.25m OD are generally below the Stage 2 GAC protective of human health, with all VOC and SVOC concentrations in 4 of the 6 samples below the Stage 2 GAC. Exceedances of the Stage 2 GAC were detected for chloromethane and vinyl chloride in two soil samples as summarised in the table at the end of this section.

Asbestos

Asbestos was only detected in one of the 22 sample from below -0.25m OD

SUMMARY OF SOIL EXCEEDANCES													
Parameter	GAC protective of Human Health Residential Use mg/kg	No of Samples Analysed	No. of Exceedance	Maximum Concentration Detected									
Arsenic	40	22	12	TP202 2.2m-3.4m (606.9mg/kg)									
Cadmium	85	22	1	TP202 2.2m-3.4m (87.7mg/kg)									
Copper	7,100	22	1	TP202 2.2m-3.4m (10,930mg/kg)									
Lead	310	22	9	TP202 2.2m-3.4m (18,580mg/kg)									
Chloromethane	0.00304	6	2	BH10 4.0-5.0m (0.014mg/kg)									
Vinyl Chloride	0.00031	6	2	BH10 4.0-5.0m (0.012mg/kg)									
Asbestos	Presence	22	1	TP205 4.0-4.3m (chysotile fibres)									

9.3 Groundwater Analytical Results

Groundwater analytical results are presented in Tables 3 in which they are screened against GAC protective of human health in a residential end use scenario and in Table 4 in which they are screened against GAC protective of nearby surface water and groundwater receptors as outlined in Section 9.1.3 above. Laboratory analytical reports are presented in Appendix D.

Petroleum Hydrocarbons

The petroleum hydrocarbon analysis completed for samples obtained from the site includes speciated TPH, BTEX & MTBE.

The petroleum hydrocarbon analytical results for all three groundwater samples were less than the laboratory MDL and less than the GAC protective of human health and controlled water, indicating no significant risk to human health or controlled waters from these parameters.

PAHs

PAH concentrations in all three samples were less than the laboratory MDL and less than the GAC protective of human health and controlled water, indicating no significant risk to human health or controlled waters from these parameters.

Metals

Metal concentrations in groundwater samples from each of the wells were below the Stage 2 GAC protective of human health.

Exceedances of the GAC protective of controlled water were detected in all three groundwater samples. Metals which exceeded the controlled water GAC include arsenic and zinc in which maximum concentrations of 475.1 μ g/l and 174 μ g/l were detected respectively which exceed their respective groundwater GAC of 7.5 μ g/l and 100 μ g/l.

VOCs and SVOCs

VOCs and SVOCs in all groundwater samples were below their respective GACs, and also the laboratory MDL, indicating no significant risk to human health or controlled waters from these parameters.

10. UPDATED CONCEPTUAL MODEL

Based on the information gained from the GQRA, the conceptual model developed as the preliminary conceptual site model has been reviewed and updated and is discussed in detail below.

10.1 Sources

Soil Sources

Based on the results of the GQRA, a potential risk to human health (future residential users) was identified due to elevated metals (arsenic, cadmium, copper and lead) and VOCs (chloromethane and vinyl chloride). Where exceedances were encountered the most significant exceedances were associated with samples from made ground, which is located close to the site surface (from ground level to an average depth of approximately 2.6m bgl and a maximum depth of 3.6m bgl), but were also present within underlying silt and gravels.

There is a potential for soils to impact controlled waters (i.e. the underlying groundwater and nearby surface waters) via leaching. However, as soils from the top 2.75m of the site, including the majority of made ground, are to be removed this will reduce the risk posed to nearby controlled water receptors.

Groundwater Sources

Slight risks to groundwater beneath the site and to nearby surface water receptors, including the River Liffey and Royal Canal, were identified due to elevated metal concentrations (including arsenic and zinc) within groundwater beneath the site. Excavation of soil from the top 2.75m of the site will remove the majority of made ground which is considered to be the source of metals to groundwater, thus reducing the risks posed.

10.2 Potential Receptors

Human Health

The on-site human health receptor is considered to be residential (without plant uptake), as AECOM understands that the site is to be redeveloped as predominantly high density residential units. This assessment is also considered to be protective of off-site receptors including nearby residential receptors.

Controlled Water

Controlled waters receptors present in the vicinity of the site include the River Liffey, located approximately 155m south of the site, and groundwater in bedrock beneath the site

10.3 Potential Pathways

Future redevelopment of the site is likely to include construction of basement car parking over a large proportion of the site and/or cover with hard standing or imported fill materials covering the remainder. The proposed development will itself therefore limit the pathways for exposure of site users to any contamination contained within the underlying fill material; i.e. soil and dust ingestion, dermal contact, inhalation of fugitive dust pathways are not active except for the duration of construction works. There is therefore not considered to be a viable pathway between metals and asbestos in soil remaining in-situ following redevelopment work and future human health receptors.

Exposure pathways to human health are therefore extremely limited and are confined to the vapour migration pathway which is relevant only to low levels of chloromethane and vinyl chloride detected in two soil samples.

AECOM understand that a secant pile wall will be constructed around the perimeter of the proposed development which will be embedded in natural stiff black slightly gravelly clay, encountered at an approximate depth of 8.2m bgl. The presence of stiff clay beneath the site and a secant pile wall around the majority of the site will also restrict the potential vertical pathway for water moving beneath the site and will limit the horizontal pathways for migration from within the site area to controlled waters.

10.4 Risks Assessment Procedure

By considering the sources, pathways and receptors (pollutant linkages), an assessment of the human health and environmental risks is made with reference to the significance and degree of the risk. This assessment is based on consideration of whether the source contamination can reach a receptor, and hence whether it is of major or minor significance.

The risk assessment has been undertaken with reference to BS10175:2001 and CIRIA Document C552: 'Contaminated Land Risk assessment - A Guide to Good Practice'. The risk assessment has been carried out by assessing the severity of the potential consequence, taking into account both the potential severity of the hazard and the sensitivity of the target, based on the categories given in the table below.

Potential Hazard Severity Definition										
Category	Definition									
Severe	Acute risks to human health, catastrophic damage to buildings/property, major pollution of controlled waters.									
Medium	Chronic risk to human health, pollution of sensitive controlled waters, significant effects on sensitive ecosystems or species, significant damage to buildings or structures.									
Mild	Pollution of non-sensitive waters, minor damage to buildings or structures.									
Minor	Requirement for protective equipment during site works to mitigate health effects, damage to non-sensitive ecosystems or species.									

The likelihood of an event (probability) takes into account both the presence of the hazard and target and the integrity of the pathway, and has been assessed based on the categories given in the Table overleaf.

Ground Conditions Report and GQRA, City Block 2 Spencer Dock

Probability of Risk Definition	1
Category	Definition
High likelihood	Pollutant linkage may be present, and risk is almost certain to occur in long term, or there is evidence of harm to the receptor.
Likely	Pollutant linkage may be present, and it is probable that the risk will occur over the long term.
Low likelihood	Pollutant linkage may be present, and there is a possibility of the risk occurring, although there is no certainty that it will do so.
Unlikely	Pollutant linkage may be present, but the circumstances under which harm would occur are improbable.

The potential severity of the risk and the probability of the risk occurring have been combined in accordance with the following matrix in order to give a level of risk for each potential hazard as shown in the table below.

Level of Risk for Potential Hazard Definition												
Probability of risk		Potential	l severity									
	Severe	Medium	Mild	Minor								
High	Very high	High	Moderate	Low/Moderate								
Likely	High	Moderate	Low/Moderate	Low								
Low	Moderate	Low/Moderate	Low	Very low								
Unlikely	Low/Moderate	Low	Very low	Very low								

Revised Site Conceptual Model													
Source	Pathway	Receptor	Severity	Likelihood	Potential Risk	Discussion							
Soil below 2.75m bgl (-0.25m OD) remaining in-situ following redevelopment Elevated metals (arsenic, cadmium, copper and lead) in a number of soil sample, asbestos in one soil sample and VOCs (chloromethane and vinyl chloride) in two soil samples exceeded the Stage 2 GAC.	 No viable pathways identified from metals and asbestos Vapour migration pathway present for VOCs 	Future site users in a residential without plant uptake scenario	Medium	Unlikely	Low	Soil from the top 2.75m bgl to be removed from site. No viable pathways identified metals and asbestos detected in residual soil provided soil will be covered by buildings or hard standing. All exposed landscape or open areas should be capped with impermeable membrane or a surface cover of clean imported fill at least 1.0m thick. Potential risk from vapour intrusion in residual soils is considered low and therefore no remedial action required. Ventilation to be installed in basements as part of the current design across the majority of the site further reduces risk. Although the site investigation did not identify significant volatiles or malodours from the soil it is recommended that the building design minimise service penetrations through foundation and/or ensure these are adequately sealed to minimise ingress of malodours.or vapours							
Leaching from soil below 2.75m bgl (-0.25m OD)	Leaching from sail to	Groundwater in gravel aquifer beneath the site	Mild	Low	Low	Risk to groundwater considered low due to brackish nature of groundwater beneath the site and lack of resource value. Removal of made ground will remove bulk of source and							
Exceedances of the GAC protective of controlled water were detected in all	 groundwater Vertical and horizontal migration of 	Groundwater in limestone bedrock aquifer beneath the site	Mild	Low	Low	migration.							
samples. Exceedances were detected for arsenic and zinc	groundwater	Off site surface water including River Liffey and Royal Canal	Mild	Unlikely	Very low	Potential risk to surface water considered very low due to distance to receptor Removal of made ground will remove bulk of source and pile wall and underlying stiff clay will reduce lateral migration.							

11. FINDINGS AND CONCLUSIONS

AECOM completed this Ground Conditions Report and Generic Quantitative Risk Assessment (GQRA), at the proposed development site on the eastern half of City Block 2, in order to establish current environmental conditions of soil and groundwater underlying the subject area and identify potential significant risks to future site users or environmental receptors following the proposed site redevelopment.

AECOM understands that the northern portion of the site will be developed with a multi-storey residential building (Block 2B). This will include a single level basement which will have a formation level of approximately 2.75m below existing ground level (-0.25m Ordnance Datum (OD)) with a basement floor level of 0.5m OD. AECOM understands that a secant or sheet pile wall is to be constructed around the perimeter of the site.

A summary of the desktop review is detailed below:

- Surrounding land use includes a mixture of commercial and residential with terraced residential houses located outside the site boundary on the south-eastern corner of City Block 2;
- Historical maps identify that the site has been relatively undeveloped, when compared with surrounding sites, which had extensive industrial uses, but has (at times) been used as a timber yard, as cattle pens, and for storage of containers/freight. Based on the known site history, there was considered to be a potential for soil and groundwater contamination associated with its former uses and with importation of contaminated fill material from nearby industrial sources during reclamation; and
- The closest surface water is the River Liffey, which is located approximately 155m south of the site. The bedrock aquifer beneath the site is classified as a 'LI- Locally important aquifer' although there are no source protection zones or known groundwater abstractions wells within a 1km radius of the site.

AECOM completed an intrusive site investigation at the site between May 2015 and August 2015. The investigation involved trial pit excavation, borehole drilling, monitoring well installation, soil sampling and groundwater sampling. A Generic Quantitative Risk Assessment was completed based on data from this site investigation. A summary of the GQRA findings is detailed below:

- A general summary of the geological profile encountered during this site investigation consisted of concrete or hard-core hard standing to a depth of approximately 0.2m bgl, underlain by made ground which contained frequent clinker and ash to a depth of approximately 2.6m bgl. This was in turn underlain by natural silt to a depth of approximately 3.8m bgl. The silt was underlain by sand and gravel to a depth of approximately 8.2m bgl at which point stiff clay was encountered.
- Soil analytical results from below 2.75m bgl (-0.25m OD), which are considered representative
 of soil likely to remain in-situ following redevelopment work. No exceedances of the Stage 2
 GAC were detected for petroleum hydrocarbons, PAHs or PCBs. Metal concentrations in
 samples from below -0.25m OD are generally below the Stage 2 GAC protective of human
 health, but exceedances of the Stage 2 GAC were detected for arsenic, cadmium, copper and
 lead in a number of soil sample, asbestos in one soil sample and VOCs (chloromethane and
 vinyl chloride) in two soil samples;
- Groundwater analytical results for petroleum hydrocarbons, metals, PAHs, SVOCs and VOCs were all less than the GAC protective of human health, indicating no significant risk to human health from these parameters; and
- Groundwater analytical results for hydrocarbons, PAHs and VOCs were all less than the GAC protective of controlled waters but a small number of metals parameters exceeded the GAC, including arsenic and zinc.

Overall, the site was found to be typical of brownfield sites within this area of the North Dublin Docklands. It appears that the made ground beneath the site is composed of poor quality fill material that contains a number of contaminants at concentrations in excess of the GAC protective of human health for a residential end use scenario. The contamination encountered appears to be historic in nature and is likely to be associated with the poor quality of fill material used in the reclamation of the

site, or in the case of hydrocarbons and PAHs, associated with historic uses of the site and the surrounding area.

Concentrations of TPH, PAHs and metals were significantly higher in the near surface made ground than were detected in the underlying silt/clay/gravel. Concentrations of these parameters in groundwater were generally not significantly elevated (with the exception of metals).

The construction of a basement at the site will involve excavation of soil to a depth of approximately 2.75m below existing ground level (-0.25m OD) and installation of a pile wall around the vicinity of the site. This will remove the majority of impacted made ground and overburden from the site. As the site is to be covered by the building footprint, hard standing or imported fill (1m in thickness) the pathways for exposure to future site users to contamination contained within the underlying soil are limited and are confined to the vapour migration pathway.

Given that slightly elevated concentrations of volatile contaminants (chloromethane and vinyl chloride) were only detected in two soil samples in excess of the Stage 2 GAC the.potential risk from vapour intrusion in residual soils is considered low and ventilation installed in basements as part of the current design further reduce the risks. Therefore no remedial action is required but it is recommended that the building design minimise service penetrations through foundation and/or ensure these are adequately sealed to minimise ingress of malodours or vapours.

Exceedances of the GAC protective of controlled water were detected in all three groundwater samples; exceedances were confined to a small number of metals including arsenic and zinc. Excavation of impacted made ground and installation of a pile wall around the site into the underlying stiff clay will remove the principal source of metals within groundwater and limit vertical and horizontal migration of groundwater, thus reducing risks posed to underlying groundwater or to nearby surface water receptors.

It is expected that risks to off site residents and construction workers during construction works at the site will be suitably mitigated with the implementation of robust Environmental Control Measures (i.e. dust suppression, wheel washes) and the use of appropriate Personal Protective Equipment (PPE) by construction workers.

It should be noted that this assessment has been completed with the following assumptions:

- Removal of soil to -0.25m OD across the site and construction of a vented single level basement;
- Future residential use without gardens or growth of produce which would allow contact with existing subsurface soils; and
- The site will be covered by buildings or hard standing. All exposed landscape or open areas will be capped with impermeable membrane or a surface cover of clean imported fill at least 1.0m thick.

If they above site design characteristics change, further assessment of risk to site users and groundwater/River Liffey is recommended.

FIGURES

September 2015

	4TH FLO GEORG CO. DUBLI	OR, ADELPHI F E'S STREET U N, IRELAND.	PLAZA, ADELPH PPER, DUN LAO T +353 (II CENTRE, DGHAIRE, (0)1 238 3100
	CLIENT	HINES I	RELAND	
	PROJECT	CITY BLOO	CK 2 GQRA	
	DRAWING TITL	.e FIGURE 2 _ S	ITE LOCATIO	N
	DRAWN	CHECKED	APPROVED	DATE
	SML	BD	SF/DUB	JUNE 2015
This drawing is not to scale it is for illustrative purposes only.	SCALE NTS	DRG NO. 4709	2981	

TABLES

September 2015

Location Code	TP201	TP201	TP202	TP202	TP203	TP204	TP205	TP205	TP206	TP207	TP208	TP209	TP209	TP210	TP210	TP211
	2.7-3.5	3.8-4.5	2.2-3.4	3.4-3.8	3.9-4.1	3.3-4	3-4	4-4.3	2.5-3.5	2.3-3.6	2.8-3.7	2.7-4.0	3.7-4.3	2.3-3.5	3.5-4.2	3.0-4.0
Sampled_Date_Time	29/05/2015	29/05/2015	29/05/2015	29/05/2015	29/05/2015	04/06/2015	27/05/2015	27/05/2015	28/05/2015	28/05/2015	29/05/2015	04/06/2015	04/06/2015	28/05/2015	28/05/2015	28/05/2015
Lab_Report_Number	15-8159-1	15-8159-1	15-8159-1	15-8159-1	15-8159-1	15-8407	15-8159-1	15-8159-1	15-8073	15-8073	15-8159-1	15-8407	15-8407	15-8073	15-8073	15-8073
Matrix_Description			Made Ground			Gravel		Gravel				-0.05	Gravel		-1 08	
Sample_Elevation bottom m OD	-0.71	-1.71	-0.86	-1.26	-1.82	-1.51	-1.25	-1.55	-0.40	-0.96	-0.94	-0.05	-1.65	-1.08	-1.78	-1.84
Sample_Elevation mean m OD	-0.308	-1.358	-0.256	-1.056	-1.718	-1.16	-0.745	-1.395	-0.904	-0.362	-0.485	-0.7	-1.35	-0.475	-1.425	-1.338
GAC_HH_RES-PL_SAND_0.58-1.45%TOC																
#5	387	<30	90	<30	<30	75	<30	<30	<30	871	262	386	293	249	56	91
20 ^{~~}	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1
44 11 ^{#5}	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1
52 ^{#5}	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
430 ^{#5}	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
#5	<7	<7	<7	<7	<7	<7	<7	<7	<7	12	46	<7	<7	<7	<7	<7
37.000**	<u>18.5"°</u> 15	<14 ^{//10}	<14""	<14"	<14	<u><14</u> ^{****} <7	<14	<14	<14	<u>38</u> "° 26	<u>75"°</u> 29	<u> </u>	<14""	<14"	<14"***	<14"***
	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7
	<26	<26	<26	<26	<26	<26	<26	<26	<26	38	75	<26	<26	<26	<26	<26
130#5	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1
310 ^{#5}	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1
18 100 ^{#5}	<0.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<0.2	<0.2	<0.2	<0.2
980 ^{#5}	<4	<4	<4	<4	<4	<4	<4	<4	<4	15	9	<4	5	<4	<4	<4
1.800 ^{#5}	<7	<7	22	19	<7	<7	<7	<7	<7	98	117	<7	44	15	<7	<7
1.900 ^{#5}	40	13	75	92	<7	<7	<7	<7	<7	232	247	49	131	95	10	<7
	<br 40	<1	22	28	</th <th><!--</th--><th><1</th><th><1</th><th><1</th><th>32</th><th><u> </u></th><th>15 64</th><th>46</th><th>10</th><th><7</th><th><!--</th--></th></th>	</th <th><1</th> <th><1</th> <th><1</th> <th>32</th> <th><u> </u></th> <th>15 64</th> <th>46</th> <th>10</th> <th><7</th> <th><!--</th--></th>	<1	<1	<1	32	<u> </u>	15 64	46	10	<7	</th
	<52	<52	119	139	<52	<52	<52	<52	<52	415	498	64	226	120	<52	<52
	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1
	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	47	18	<10	<10	<10	<10
	<10	<10	<10	<10	<10	<10	<10	<10	<10	26	20	<10	<10	<10	<10	<10
	<0.1	<0.1	<0.5 41	<0.1 43	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5 167	<0.1	<0.5	<0.1 82	<0.1 30	<0.1	<0.1
	40	13	65	73	<10	<10	<10	<10	<10	182	200	49	106	81	<10	<10
	<30	<30	<30	<30	<30	<30	<30	<30	<30	38	82	<30	<30	<30	<30	<30
0.13	< 0.005	< 0.005	< 0.025	< 0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	<0.025	0.023	< 0.025	< 0.005	< 0.005	< 0.005	< 0.005
<u>320^{#5}</u>	<0.005	<0.005	<0.025	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.025	0.012	<0.025	<0.005	0.013	<0.005	<0.005
29	<0.005	<0.005	<0.025	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.025	<0.005	<0.025	<0.005	<0.005	<0.005	<0.005
3.4 ^{#3}	< 0.01 #7	< 0.01 #7	< 0.05 #7	< 0.01 #7	< 0.01 #7	< 0.01 #7	< 0.01 #7	< 0.01 #7	< 0.01 #7	< 0.05 #7	< 0.01 #7	< 0.05 #7	< 0.01 #7	< 0.01 #7	< 0.01 #7	< 0.01 #7
31 ^{#5}	<0.005	<0.005	<0.025	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.025	<0.005	<0.025	<0.005	<0.005	<0.005	<0.005
#6	< 0.025	<0.025	<0.125	<0.025	< 0.025	<0.025	<0.025	<0.025	<0.025	<0.125	0.035	<0.125	< 0.025	< 0.025	< 0.025	<0.025
23.4 ^{**} 0.85 ^{#5}	<0.005	<0.005	<0.025	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.025	<0.005	<0.025	<0.005	<0.005	<0.005	<0.005
1.800 ^{#5}	< 0.03	< 0.03	0.05	<0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.06	< 0.03	< 0.03	0.12	< 0.03	< 0.03	< 0.03
1.800#5	<0.05	<0.05	0.06	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.1	<0.05	<0.05	0.12	<0.05	<0.05	<0.05
2.100 ^{#5}	< 0.04	< 0.04	0.08	0.06	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	0.22	0.05	< 0.04	0.16	0.06	< 0.04	< 0.04
<u> </u>	<0.04	<0.1	0.15	0.73 <0.04	<0.03	0.39	<0.03	<0.05	<0.06	∠.14 0.28	0.47	0.25	∠.93 0.42	0.38	<0.03	0.25
1.500 ^{#5}	0.14	0.08	1.83	0.63	<0.03	0.33	<0.03	0.05	0.06	1.97	0.51	0.25	2.87	0.44	<0.03	0.22
3.700 ^{#5}	0.11	0.08	1.27	0.44	< 0.03	0.29	<0.03	0.04	<0.03	1.37	0.4	0.16	1.9	0.38	<0.03	0.17
11 ^{#5}	0.18	0.08	0.98	0.44	0.09	0.24	0.07	<0.06	<0.06	0.79	0.34	0.14	1.06	0.29	<0.06	0.12
29 ^{#5}	0.14	0.07	1.01	0.48	0.06	0.26	0.06	0.04	0.04	0.88	0.31	0.14	1.47	0.3	<0.02	0.1
3.1 ^{**}	0.12	0.06	0.47	0.14	<0.04	0.16	0.09	0.08	<0.04	0.34	0.25	0.11	0.67	0.19	<0.04	< 0.06
	<0.04	<0.04	0.08	<0.04	<0.04	<0.04	0.05	<0.04	< 0.04	0.1	0.05	<0.04	0.19	<0.04	<0.04	<0.04
350#5	0.08	0.05	0.34	0.13	<0.04	0.08	0.12	0.09	<0.04	0.35	0.2	0.08	0.7	0.1	<0.04	<0.04
3.9#5	0.15	0.07	0.85	0.34	0.06	0.18	0.12	0.09	<0.05	0.74	0.31	0.14	1.3	0.22	<0.05	0.08
110 ^{#5}	0.06	0.03	0.33	0.13	0.03	0.07	0.05	0.04	< 0.02	0.29	0.12	0.05	0.51	0.08	< 0.02	0.03
	0.∠1 <1	<u> </u>	<pre>0 </pre>	<1 <1	0.09 <1	<u> </u>	<1 <1	0.13 <1	<0.07	<pre>1.03</pre>	0.43 <1	<pre>0.19 </pre>	- 1.01 - c1	0.3 <1	<0.07 <1	<pre>0.11 </pre>
	0.63	0.34	4.16	1.48	<0.22	0.92	0.47	0.4	<0.22	4.2	1.59	0.7	6.91	1.12	<0.22	0.39
	0.37 ^{#8}	0.2 ^{#8}	1.86 ^{#8}	0.71 ^{#8}	0.13 ^{#8}	0.43 ^{#8}	0.38 ^{#8}	0.29 ^{#8}	< 0.15 ^{#15}	1.72 ^{#8}	0.83 ^{#8}	0.34 ^{#8}	3.17 ^{#8}	0.49 ^{#8}	< 0.15 ^{#15}	0.15 ^{#8}
	1.1	0.67	9.14	3.74	<0.64	2.24	0.65	<0.64	<0.64	10.29	3.3	1.46	15.72	2.69	<0.64	1.09
#5	0.16 ^{#8}	0.1 ^{#8}	0.68 ^{#8}	0.24 ^{#8}	<0.08 ^{#15}	0.18 ^{#8}	0.21 ^{#8}	0.16 ^{#8}	<0.08 ^{#15}	0.69 ^{#8}	0.4 ^{#8}	0.15 ^{#8}	1.36 ^{#8}	0.19 ^{#8}	<0.08 ^{#15}	<0.08 ^{#15}
1.2"~	0.12 ^{***} <0.04	0.06 ^{~~} <0.04	0.47 ^{~~} <0.04	0.14 ^{~°} <0.04	<0.04	0.16 ⁷⁷ <0.04	0.09 ^{**} <0.04	0.06 ^{~°} <0.04	<0.04 ^{#10} <0.04	0.51 ^{**} <0.04	0.25 ^{°°} <0.04	0.11 [™] <0.04	0.87**	0.19 ^{**3}	<0.04"13	0.06 ^{~°} <0.04
	NO.07			NU.UT	NU.UT	NU.UT	-0.0T	NU.UT	NU.UT	10.07	10.04	20.07	0.1	20.07	NU.UT	-0.0T

			Ĩ																	
				Location_Code	TP201	TP201	TP202	TP202	TP203	TP204	TP205	TP205	TP206	TP207	TP208	TP209	TP209	TP210	TP210	TP211
				Sample_Depth_Range m BGL	2.7-3.5	3.8-4.5	2.2-3.4	3.4-3.8	3.9-4.1	3.3-4	3-4	4-4.3	2.5-3.5	2.3-3.6	2.8-3.7	2.7-4.0	3.7-4.3	2.3-3.5	3.5-4.2	3.0-4.0
				Sampled Date Time	29/05/2015	29/05/2015	29/05/2015	29/05/2015	29/05/2015	04/06/2015	27/05/2015	27/05/2015	28/05/2015	28/05/2015	29/05/2015	04/06/2015	04/06/2015	28/05/2015	28/05/2015	28/05/2015
				Lab Report Number	15-8159-1	15-8159-1	15-8159-1	15-8159-1	15-8159-1	15-8407	15-8159-1	15-8159-1	15-8073	15-8073	15-8159-1	15-8407	15-8407	15-8073	15-8073	15-8073
				Matrix Description	Silt	Gravel	Made Ground	Gravel	Gravel	Gravel	Silt	Gravel	Silt	Silt	Silt	Silt	Gravel	Silt	Gravel	Gravel
				Semula Elevation ton m OD		1.01			1.60	0.91	0.05	1.05	0.40	0.24	0.02	0.05	1.05	0.12	1.00	
				Sample_Elevation top m OD	0.09	-1.01	0.34	-0.86	-1.02	-0.81	-0.25	-1.25	-0.40	0.24	-0.03	-0.05	-1.05	0.13	-1.08	-0.64
				Sample_Elevation bottom m OD	-0.71	-1.71	-0.86	-1.26	-1.82	-1.51	-1.25	-1.55	-1.40	-0.96	-0.94	-1.35	-1.65	-1.08	-1.78	-1.84
				Sample_Elevation mean m OD	-0.308	-1.358	-0.256	-1.056	-1.718	-1.16	-0.745	-1.395	-0.904	-0.362	-0.485	-0.7	-1.35	-0.475	-1.425	-1.338
Chem Group	ChemName	output unit	EQL	GAC HH RES-PL SAND 0.58-1.45%TOC															·	
трц		ma/ka	30		387	<30	90	<30	<30	75	~30	<30	<30	871	262	386	203	240	56	01
1111	LTTTCO-C40	mg/kg	0.1	#5	-0.1	<0.1		-0.1	-0.1	10 1	<0.1	<0.1	-0.1	-0.5	202	-0.5	233	243		-0.1
		mg/kg	0.1	20"	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	c.0>	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1
	>C6-C8 Aliphatics	mg/kg	0.1	44*5	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1
	>C8-C10 Aliphatics	mg/kg	0.1	11 ^{#5}	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1
	>C10-C12 Aliphatics	mg/kg	0.2	52 ^{#5}	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
	>C12-C16 Aliphatics	mg/kg	4	430 ^{#5}	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
	>C16-C21 Aliphatics	ma/ka	7		<7	<7	<7	<7	<7	<7	<7	<7	<7	12	46	<7	<7	<7	<7	<7
	>C16-C35 Aliphatics	ma/ka	_	27 000 ^{#5}	19 5 ^{#8}	-1 <i>1</i> #15	1 1 # 15	1 1 1 1 1 1 5	1 1 # 15	-1 A ^{#15}	1 1 # 15	1 1 # 15	1 1 # 15	20 ^{#8}	75#8	10 5 ^{#8}	1 1 1 1 1 1 5	1 1 1 1 1 1 5	1 1 1 1 1 1 5	1 1 1 1 1 1 5
	>C21-C35 Aliphatics	mg/kg	7	57.000	15		~7	~7	~7	~7	~7	~7	~7	26	20	19.5	~7	~7	~7	7
	C25 C40 Aliphatics	mg/kg	7		-7	~7	~7	.7	-7	~7	~7	~7	~7		23	-7	~7	~7	-7	
		mg/kg	/		</td <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--></td></td></td></td></td></td></td></td></td></td></td></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--></td></td></td></td></td></td></td></td></td></td></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--></td></td></td></td></td></td></td></td></td></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--></td></td></td></td></td></td></td></td></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--></td></td></td></td></td></td></td></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--></td></td></td></td></td></td></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--></td></td></td></td></td></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--></td></td></td></td></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--></td></td></td></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--></td></td></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--></td></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><!--</td--></td></td></td>	</td <td><!--</td--><td><!--</td--></td></td>	</td <td><!--</td--></td>	</td
		mg/kg	26		<26	<26	<26	<26	<26	<26	<26	<26	<26	38	/5	<26	<26	<26	<26	<26
	>EC5-EC7 Aromatics	mg/kg	0.1	130 ^{#5}	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1
	>EC7-EC8 Aromatics	mg/kg	0.1	310 ^{#5}	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1
	>EC8-EC10 Aromatics	mg/kg	0.1	18 ^{#5}	<0.1	<0.1	<0.5	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.5	<0.1	<0.1	<0.1	< 0.1
	>EC10-EC12 Aromatics	mg/kg	0.2	100#5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
	>EC12-EC16 Aromatics	ma/ka	4	980 ^{#5}	<4	<4	<4	<4	<4	<4	<4	<4	<4	15	9	<4	5	<4	<4	<4
	>EC16-EC21 Aromatics	ma/ka	7	380 4 800 ^{#5}	<7	<7	22	19	<7	<7	<7	<7	<7	98	117	<7	44	15	<7	~7
	>EC21 EC25 Aromatica	mg/kg	7	1.800	40	12	75	13	-7	-7	-7	<7	-7	30	247	40	121	15	10	
	>EC2T-EC35 Aromatics	mg/kg	/	1.900″~	40	13	75	92	</td <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td>232</td><td>247</td><td>49</td><td>131</td><td>95</td><td>10</td><td><!--</td--></td></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><!--</td--><td>232</td><td>247</td><td>49</td><td>131</td><td>95</td><td>10</td><td><!--</td--></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td>232</td><td>247</td><td>49</td><td>131</td><td>95</td><td>10</td><td><!--</td--></td></td></td>	</td <td><!--</td--><td>232</td><td>247</td><td>49</td><td>131</td><td>95</td><td>10</td><td><!--</td--></td></td>	</td <td>232</td> <td>247</td> <td>49</td> <td>131</td> <td>95</td> <td>10</td> <td><!--</td--></td>	232	247	49	131	95	10	</td
	>EC35-EC40 Aromatics	mg/kg	1		</td <td><!--</td--><td>22</td><td>28</td><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td>32</td><td>50</td><td>15</td><td>46</td><td>10</td><td><!--</td--><td><!--</td--></td></td></td></td></td></td></td></td>	</td <td>22</td> <td>28</td> <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td>32</td><td>50</td><td>15</td><td>46</td><td>10</td><td><!--</td--><td><!--</td--></td></td></td></td></td></td></td>	22	28	</td <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td>32</td><td>50</td><td>15</td><td>46</td><td>10</td><td><!--</td--><td><!--</td--></td></td></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><!--</td--><td>32</td><td>50</td><td>15</td><td>46</td><td>10</td><td><!--</td--><td><!--</td--></td></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td>32</td><td>50</td><td>15</td><td>46</td><td>10</td><td><!--</td--><td><!--</td--></td></td></td></td>	</td <td><!--</td--><td>32</td><td>50</td><td>15</td><td>46</td><td>10</td><td><!--</td--><td><!--</td--></td></td></td>	</td <td>32</td> <td>50</td> <td>15</td> <td>46</td> <td>10</td> <td><!--</td--><td><!--</td--></td></td>	32	50	15	46	10	</td <td><!--</td--></td>	</td
	>EC5-EC40 Aromatics	mg/kg	26		40	<26	119	139	<26	<26	<26	<26	<26	377	423	64	226	120	<26	<26
	>C5-C40 Aliphatics & Aromatics	mg/kg	52		<52	<52	119	139	<52	<52	<52	<52	<52	415	498	64	226	120	<52	<52
	>C6-C10 Aliphatics	mg/kg	0.1		<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1
	>C10-C25 Aliphatics	mg/kg	10		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	47	18	<10	<10	<10	<10
	>C25-C35 Aliphatics	ma/ka	10		<10	<10	<10	<10	<10	<10	<10	<10	<10	26	20	<10	<10	<10	<10	<10
	>EC6-EC10 Aromatics	mg/kg	0.1		<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<01	<0.5	<0.1	<0.1	<0.1	<0.1
	>EC10 EC25 Aromation	mg/kg	10		<0.1	<0.1		42	<0.1	<0.1	<0.1	<0.1	<0.1	167	175	<0.5	0.1	20	-10	<0.1
	>ECT0-EC25 Aromatics	ng/kg	10		<10	<10	41	43	<10	<10	<10	<10	<10	107	175	<10	02	30	<10	<10
	>EC25-EC35 Aromatics	mg/kg	10		40	13	65	73	<10	<10	<10	<10	<10	182	200	49	106	81	<10	<10
	Mineral Oil (C8-C40)	mg/kg	30		<30	<30	<30	<30	<30	<30	<30	<30	<30	38	82	<30	<30	<30	<30	<30
BTEX	Benzene	mg/kg	0.01	0.13 ^{#5}	<0.005	<0.005	<0.025	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.025	0.023	<0.025	<0.005	<0.005	<0.005	<0.005
	Toluene	mg/kg	0.01	320 ^{#5}	< 0.005	<0.005	<0.025	< 0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.025	0.012	<0.025	< 0.005	0.013	<0.005	< 0.005
	Ethylbenzene	mg/kg	0.01	29 ^{#5}	< 0.005	<0.005	<0.025	< 0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	<0.025	<0.005	<0.025	< 0.005	< 0.005	< 0.005	< 0.005
	Xvlene (m & p)	ma/ka	0.01		< 0.005	< 0.005	<0.025	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.025	<0.005	<0.025	< 0.005	< 0.005	< 0.005	< 0.005
	Xvlene Total	ma/ka		ο / #3	<0.01 ^{#7}	<0.01 ^{#7}	<0.05 ^{#7}	<0.01 ^{#7}	<0.01 ^{#7}	<0.01 ^{#7}	<0.01 ^{#7}	<0.01 ^{#7}	<0.01 ^{#7}	<0.05 ^{#7}	<0.01 ^{#7}	<0.05 ^{#7}	<0.01 ^{#7}	<0.01 ^{#7}	<0.01 ^{#7}	<0.01 ^{#7}
	Xylene (o)	mg/kg	0.01	3.4	<0.01	<0.01	<0.05		<0.01	<0.01			<0.01	<0.05		<0.05	<0.01	<0.01		<0.005
		mg/kg	0.01	31	<0.005	<0.005	<0.025	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.025	0.025	<0.025	<0.005	<0.005	<0.005	<0.005
Ownerster		mg/kg	0.03	#6	<0.025	<0.025	<0.120	<0.020	<0.020	<0.020	<0.020	<0.025	<0.020	<0.120	0.035	<0.120	<0.020	<0.020	<0.020	<0.025
Oxygenates		mg/Kg	0.01	23.4**	<0.005	<0.005	<0.025	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.025	<0.005	<0.025	<0.005	<0.005	<0.005	<0.005
PAH	Naphthalene	mg/kg	0.04	0.85	<0.04	<0.04	0.05	0.11	<0.04	<0.04	<0.04	<0.04	<0.04	0.15	<0.04	<0.04	0.34	0.08	<0.04	<0.04
	Acenaphthylene	mg/kg	0.03	1.800 ^{#5}	<0.03	<0.03	0.05	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.06	<0.03	<0.03	0.12	<0.03	< 0.03	<0.03
	Acenaphthene	mg/kg	0.05	1.800 ^{#5}	< 0.05	< 0.05	0.06	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.1	< 0.05	< 0.05	0.12	< 0.05	< 0.05	< 0.05
	Fluorene	mg/kg	0.04	2.100 ^{#5}	< 0.04	< 0.04	0.08	0.06	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	0.22	0.05	< 0.04	0.16	0.06	<0.04	< 0.04
	Phenanthrene	mg/kg	0.03	1.200#5	0.04	0.1	1.25	0.73	< 0.03	0.39	< 0.03	0.05	0.06	2.14	0.47	0.25	2.93	0.38	< 0.03	0.25
	Anthracene	mg/ka	0.04	29 000#5	< 0.04	< 0.04	0.15	< 0.04	< 0.04	0.14	< 0.04	< 0.04	< 0.04	0.28	0.09	0.07	0.42	0.08	< 0.04	0.06
	Fluoranthene	ma/ka	0.03	1 500 ^{#5}	0.14	0.08	1.83	0.63	<0.03	0.33	<0.03	0.05	0.06	1 97	0.51	0.25	2 87	0 44	<0.03	0.22
	Pyrene	mg/kg	0.03	1,500 2,700 ^{#5}	0.11	0.08	1 27	0.00	<0.03	0.29	<0.03	0.04	<0.03	1 37	0.4	0.16	1 9	0.38	<0.03	0.17
	Ponz(a)anthracana	mg/kg	0.00	3.700	0.11	0.00	0.09	0.44	0.00	0.20	<0.00 0.07	-0.0 4	<0.00	0.70	0.4	0.10	1.06	0.00	<0.00	0.17
		ng/kg	0.00	11"	0.10	0.08	0.96	0.44	0.09	0.24	0.07	<0.06	<0.06	0.79	0.34	0.14	1.00	0.29	<0.00	0.12
	Chrysene	mg/kg	0.02	29**	0.14	0.07	1.01	0.48	0.06	0.26	0.06	0.04	0.04	0.88	0.31	0.14	1.47	0.3	<0.02	0.1
	Benzo(a) pyrene	mg/kg	0.04	3.1 ^{#5}	0.12	0.06	0.47	0.14	<0.04	0.16	0.09	0.06	<0.04	0.51	0.25	0.11	0.87	0.19	<0.04	0.06
	Indeno(1,2,3-c,d)pyrene	mg/kg	0.04	44 ^{#5}	0.08	0.05	0.34	0.11	<0.04	0.1	0.09	0.07	<0.04	0.34	0.2	0.07	0.66	0.09	< 0.04	<0.04
	Dibenz(a,h)anthracene	mg/kg	0.04	0.31 ^{#5}	< 0.04	< 0.04	0.08	< 0.04	< 0.04	< 0.04	0.05	< 0.04	< 0.04	0.1	0.05	< 0.04	0.19	< 0.04	< 0.04	< 0.04
	Benzo(g,h,i)perylene	mg/kg	0.04	350 ^{#5}	0.08	0.05	0.34	0.13	< 0.04	0.08	0.12	0.09	< 0.04	0.35	0.2	0.08	0.7	0.1	< 0.04	< 0.04
	Benzo(b)fluoranthene	mg/ka	0.05	3 0 ^{#5}	0.15	0.07	0.85	0.34	0.06	0.18	0.12	0.09	< 0.05	0.74	0.31	0.14	1.3	0.22	< 0.05	0.08
	Benzo(k)fluoranthene	ma/ka	0.02	140 ^{#5}	0.06	0.03	0.33	0.13	0.03	0.07	0.05	0.04	<0.02	0.29	0.12	0.05	0.51	0.08	<0.02	0.03
	Benzo(h)&(k)fluorantheno	ma/ka	0.02		0.00	0.00	1 1 2	0.10	0.00	0.07	0.00	0.12	~0.02	1.02	0.12	0.00	1 91	0.00	<0.02	0.00
		mg/kg	0.07	1	0.21	U. I	1.10	0.47	0.09	0.20	0.17	0.13	<0.07	1.03	0.43	0.19	1.01	0.3	<0.07	
		mg/kg	1	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	PAHS (SUM OF 6)	mg/kg	0.22		0.63	0.34	4.16	1.48	< 0.22	0.92	0.47	0.4	<0.22	4.2	1.59	0.7	6.91	1.12	<0.22	0.39
	PAHs (sum of 4)	mg/kg			0.37 ^{#8}	0.2 ^{#8}	1.86 ^{#8}	0.71 ^{#8}	0.13 ^{#8}	0.43 ^{#8}	0.38 ^{#8}	0.29 ^{#8}	<0.15 ^{#15}	1.72 ^{#8}	0.83 ^{#8}	0.34 ^{#8}	3.17 ^{#8}	0.49 ^{#8}	< 0.15 ^{#15}	0.15 ^{#8}
	PAH 17 Total	mg/kg	0.64		1.1	0.67	9.14	3.74	<0.64	2.24	0.65	<0.64	< 0.64	10.29	3.3	1.46	15.72	2.69	<0.64	1.09
	benzo(g,h,i)perylene + indeno(1,2,3-cd)pyrene	mg/kg			0.16 ^{#8}	0.1 ^{#8}	0.68 ^{#8}	0.24 ^{#8}	<0.08 ^{#15}	0.18 ^{#8}	0.21 ^{#8}	0.16 ^{#8}	< 0.08 #15	0.69#8	0.4 ^{#8}	0.15#8	1.36 ^{#8}	0.19 ^{#8}	< 0.08 #15	< 0.08 # 15
	Coal Tar (Bap as surrogate marker)	mg/kg		1.2 ^{#5}	0.12 ^{#8}	0.06 ^{#8}	0.47 ^{#8}	0 14 ^{#8}	<0.04 ^{#15}	0.16 ^{#8}	0.09#8	0.06 ^{#8}	<0.04 ^{#15}	0.51 ^{#8}	0.25 ^{#8}	0.11 ^{#8}	0.87 ^{#8}	0 19 ^{#8}	<0.04 ^{#15}	0.06 ^{#8}
	Coronene	ma/ka	0.04		<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.1	<0.04	<0.04	<0.04
			0.04				3010 1		-010 r	10101	10101	10101	10101	10101	10101	10101			10101	

Location_Code	TP201	TP201	TP202	TP202	TP203	TP204	TP205	TP205	TP206	TP207	TP208	TP209	TP209	TP210	TP210	TP211
Sample_Depth_Range m BGL	2.7-3.5	3.8-4.5	2.2-3.4	3.4-3.8	3.9-4.1	3.3-4	3-4	4-4.3	2.5-3.5	2.3-3.6	2.8-3.7	2.7-4.0	3.7-4.3	2.3-3.5	3.5-4.2	3.0-4.0
Sampled_Date_Time	29/05/2015	29/05/2015	29/05/2015	29/05/2015	29/05/2015	04/06/2015	27/05/2015	27/05/2015	28/05/2015	28/05/2015	29/05/2015	04/06/2015	04/06/2015	28/05/2015	28/05/2015	28/05/2015
Lab_Report_Number	15-8159-1	15-8159-1	15-8159-1	15-8159-1	15-8159-1	15-8407	15-8159-1	15-8159-1	15-8073	15-8073	15-8159-1	15-8407	15-8407	15-8073	15-8073	15-8073
Matrix_Description	Silt	Gravel	Made Ground	Gravel	Gravel	Gravel	Silt	Gravel	Silt	Silt	Silt	Silt	Gravel	Silt	Gravel	Gravel
Sample_Elevation top m OD	0.09	-1.01	0.34	-0.86	-1.62	-0.81	-0.25	-1.25	-0.40	0.24	-0.03	-0.05	-1.05	0.13	-1.08	-0.84
Sample_Elevation bottom m OD	-0.71	-1.71	-0.86	-1.26	-1.82	-1.51	-1.25	-1.55	-1.40	-0.96	-0.94	-1.35	-1.65	-1.08	-1.78	-1.84
Sample_Elevation mean m OD	-0.308	-1.358	-0.256	-1.056	-1.718	-1.16	-0.745	-1.395	-0.904	-0.362	-0.485	-0.7	-1.35	-0.475	-1.425	-1.338
GAC_HH_RES-PL_SAND_0.58-1.45%TOC																
	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
0.12*'	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.007	<0.005	<0.005	0.009	<0.005	<0.005	<0.005
	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
40	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
0.2#3	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035
555 ^{#6}	3	83	120	27	3	6	3	7	3	5	5	3	2	3	2	2
40#5	25.2	223.7	606.9	148.2	180.4	40.9	31.1	86.6	90.2	35.2	176.3	18.9	25.1	66.4	38.1	110.4
1.340#6	46	305	81	78	29	32	43	37	51	310	106	106	41	81	69	55
85#5	1.1	35.9	87.7	4.5	<0.1	0.6	1.2	2.8	0.8	0.6	1.1	1.9	1.2	9.1	2.8	3.5
	55	167.2	38.7	82.5	146.2	120.6	127.9	7	106.9	58.2	62.2	48.3	91.8	52.2	88	105
7.100#5	63	2031	10,930	625	24	8	60	293	119	66	95	80	66	185	42	294
310#4	183	18,300	18,580	537	36	18	131	432	85	334	218	214	83	443	479	714
56 ^{#5}	0.6	<0.1	1.5	0.7	1.6	0.6	0.2	<0.1	0.2	2	1.1	0.7	0.1	0.7	<0.1	<0.1
673 ^{#6}	5.2	34.6	76	18.1	18.5	14.4	11.5	4.8	13.5	5.1	6.5	5	8.8	5.7	8.5	10
180#5	31.7	15.2	19.3	14.3	4.9	4.3	22.3	9.1	6.5	31.9	24.7	27.7	16	22.6	11.6	22
430#5	1	1	4	2	<1	<1	<1	<1	<1	2	1	1	<1	1	<u> </u>	5
40000#5	917	16,460	17,920	3174	297	830	521	1073	1523	145	309	332	314	5020	964	1069
6 ^{#5}	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	0.5	<0.3	<0.3	<0.3	<0.3	<0.3
910 ^{#5}	55	167.2	38.7	82.5	146.2	120.6	127.9	7	106.9	58.2	61.7	48.3	91.8	52.2	88	105
	1.82	0.31	1.61	0.4	0.37	0.9	1.98	1 ^{#29}	0.41	3.95	3.07	3.44	1.41	2.5	0.71	0.52
	39.2	33.2	36.1	44.1	39.2	23.4	37.9	17.8	29.8	41.7	21.3	45.2	38	23.2	14.5	19
	7.48	7.4	6.63	7.47	5.81	6.8	7.7	7.63	5.92	7.39	8.12	8.15	7.88	7.5	8.02	7.94
	None	None	None	None	None	None	None	Chrysotile	None							
	None	None	None	None	None	None	None	-	None							
	None	None	None	None	None	None	None	Quantifiable	None							
	None	None	None	None	None	None	None	Fibre Bundles	None							
	None	None	None	None	None	None	None	-	None							

				Location_Code	TP201	TP201	TP202	TP202	TP203	TP204	TP205	TP205	TP206	TP207	TP208	TP209	TP209	TP210	TP210	TP211
				Sample_Depth_Range m BGL	2.7-3.5	3.8-4.5	2.2-3.4	3.4-3.8	3.9-4.1	3.3-4	3-4	4-4.3	2.5-3.5	2.3-3.6	2.8-3.7	2.7-4.0	3.7-4.3	2.3-3.5	3.5-4.2	3.0-4.0
				Sampled_Date_Time	29/05/2015	29/05/2015	29/05/2015	29/05/2015	29/05/2015	04/06/2015	27/05/2015	27/05/2015	28/05/2015	28/05/2015	29/05/2015	04/06/2015	04/06/2015	28/05/2015	28/05/2015	28/05/2015
				Lab_Report_Number	15-8159-1	15-8159-1	15-8159-1	15-8159-1	15-8159-1	15-8407	15-8159-1	15-8159-1	15-8073	15-8073	15-8159-1	15-8407	15-8407	15-8073	15-8073	15-8073
				Matrix_Description	Silt	Gravel	Made Ground	Gravel	Gravel	Gravel	Silt	Gravel	Silt	Silt	Silt	Silt	Gravel	Silt	Gravel	Gravel
				Sample_Elevation top m OD	0.09	-1.01	0.34	-0.86	-1.62	-0.81	-0.25	-1.25	-0.40	0.24	-0.03	-0.05	-1.05	0.13	-1.08	-0.84
				Sample_Elevation bottom m OD	-0.71	-1.71	-0.86	-1.26	-1.82	-1.51	-1.25	-1.55	-1.40	-0.96	-0.94	-1.35	-1.65	-1.08	-1.78	-1.84
				Sample_Elevation mean m OD	-0.308	-1.358	-0.256	-1.056	-1.718	-1.16	-0.745	-1.395	-0.904	-0.362	-0.485	-0.7	-1.35	-0.475	-1.425	-1.338
			-																	
Chem_Grou	o ChemName	output unit	EQL	GAC_HH_RES-PL_SAND_0.58-1.45%TOC																
PCBs	PCB 118	mg/kg	0.01	0.12 ^{#1}	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
	PCB 28	mg/kg	0.01		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.007	<0.005	<0.005	0.009	<0.005	<0.005	<0.005
	PCB 52	mg/kg	0.01		< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
	PCB 101	mg/kg	0.01		< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
	PCB 138	mg/kg	0.01		< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
	PCB 153	mg/kg	0.01		< 0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005
	PCB 180	mg/kg	0.01		< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
	Total PCB 7 Congeners	mg/kg	0.04	0.2 ^{#3}	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035
Metals	Antimony	mg/kg	1	555 ^{#6}	3	83	120	27	3	6	3	7	3	5	5	3	2	3	2	2
	Arsenic	mg/kg	0.5	40 ^{#5}	25.2	223.7	606.9	148.2	180.4	40.9	31.1	86.6	90.2	35.2	176.3	18.9	25.1	66.4	38.1	110.4
	Barium	mg/kg	1	1.340 ^{#6}	46	305	81	78	29	32	43	37	51	310	106	106	41	81	69	55
	Cadmium	mg/kg	0.1	85 ^{#5}	1.1	35.9	87.7	4.5	<0.1	0.6	1.2	2.8	0.8	0.6	1.1	1.9	1.2	9.1	2.8	3.5
	Chromium (III+VI)	mg/kg	0.5		55	167.2	38.7	82.5	146.2	120.6	127.9	7	106.9	58.2	62.2	48.3	91.8	52.2	88	105
	Copper	mg/kg	1	7.100 ^{#5}	63	2031	10,930	625	24	8	60	293	119	66	95	80	66	185	42	294
	Lead	mg/kg	5	310 ^{#4}	183	18,300	18,580	537	36	18	131	432	85	334	218	214	83	443	479	714
	Mercury	mg/kg	0.1	56 ^{#5}	0.6	<0.1	1.5	0.7	1.6	0.6	0.2	<0.1	0.2	2	1.1	0.7	0.1	0.7	<0.1	<0.1
	Molybdenum	mg/kg	0.1	673 ^{#6}	5.2	34.6	76	18.1	18.5	14.4	11.5	4.8	13.5	5.1	6.5	5	8.8	5.7	8.5	10
	Nickel	mg/kg	0.7	180 ^{#5}	31.7	15.2	19.3	14.3	4.9	4.3	22.3	9.1	6.5	31.9	24.7	27.7	16	22.6	11.6	22
	Selenium	mg/kg	1	430 ^{#5}	1	1	4	2	<1	<1	<1	<1	<1	2	1	1	<1	1	1	5
	Zinc	mg/kg	5	40000 ^{#5}	917	16,460	17,920	3174	297	830	521	1073	1523	145	309	332	314	5020	964	1069
	Chromium (hexavalent)	mg/kg	0.3	6 ^{#5}	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	0.5	<0.3	<0.3	<0.3	<0.3	<0.3
	Chromium (Trivalent)	mg/kg	0.5	910 ^{#5}	55	167.2	38.7	82.5	146.2	120.6	127.9	7	106.9	58.2	61.7	48.3	91.8	52.2	88	105
Organics	TOC	%	0.02		1.82	0.31	1.61	0.4	0.37	0.9	1.98	1 ^{#29}	0.41	3.95	3.07	3.44	1.41	2.5	0.71	0.52
Inorganics	Moisture Content 105C	%	0.1		39.2	33.2	36.1	44.1	39.2	23.4	37.9	17.8	29.8	41.7	21.3	45.2	38	23.2	14.5	19
_	pH (Lab)	pH_Units	0.01		7.48	7.4	6.63	7.47	5.81	6.8	7.7	7.63	5.92	7.39	8.12	8.15	7.88	7.5	8.02	7.94
Asbestos	Asbestos Type	None			None	None	None	None	None	None	None	Chrysotile	None							
	Asbestos Type 2	None			None	None	None	None	None	None	None	-	None							
	Asbestos Level	None			None	None	None	None	None	None	None	Quantifiable	None							
	Asbestos Containing Material	None			None	None	None	None	None	None	None	Fibre Bundles	None							
	Asbestos Containing Material (2)	None			None	None	None	None	None	None	None	-	None							
		• • •					-	•	-				-	-					-	

Comments #1 USEPA RSL

#2 Dutch Serious 2009 #3 Dutch Intervention 2009

#4 Defra C4SL 12/2014

#5 AECOM (modified LQM/CIEH S4ULs)

#6 AECOM (modified EIC)

#7 ESDAT Combined. Some Analytes are missing from this Combined Compound.

#8 ESDAT Combined with Non-Detect Multiplier of 0.5.

#9 No interpretation possible

#10 Possible PAHs and humics

#11 Humics and possible PAHs

#12 Possble PAHs and humics

#13 Possible PAHs/humics

#15 ESDAT Combined.

#16 PAHs and humics

#19 Possible PAHs

#21 Humic acids

#28 PAHs

#29 NDP

GAC: Generic Assessment Criteria

(blank): No assessment criteria available - : Not analysed

Key GAC_HH_RES-PL_SAND_0.58-1.45%TOC

Exceedance of HH Soil. Residential without Plant Uptake. Sand. TOC >=0.58 to <1.45%

Table 1 Soil Analytical Results - Trial Pits City Block 2

Table 2 Soil Analytical Results - Boreholes City Block 2

_						
Location_Code	BH10	BH11	BH12	BH13	BH14	BH9
Sample_Depth_Range m BGL	4-5	4-5	4-5	4-5	4-5	4-5
Sampled_Date_Time	13/07/2015	15/07/2015	10/07/2015	21/07/2015	30/06/2015	09/07/2015
Lab_Report_Number	JEL-15-10240-1	JEL-15-10240-1	JEL-15-10042-1	JEL-15-10536-1	JEL-15-9506-1	JEL-15-9992-1
Matrix_Description	Gravel	Silt	Gravel	Silt	Gravel	Silt
Sample_Elevation top m OD	-1.718	-1.788	-1.656	-1.339	-1.639	-1.316
Sample_Elevation bottom m OD	-2.718	-2.788	-2.656	-2.339	-2.639	-2.316
Sample Elevation mean m OD	-2.218	-2.288	-2.156	-1.839	-2.139	-1.816

Chem_Group	ChemName	output unit	EQL	GAC_HH_RES-PL_SAND_0.58- 1.45%TOC						
ТРН	EPH C8-C40	mg/kg	30	1.45%100	<30	<30	136	<30	<30	<30
	>C5-C6 Aliphatics	mg/kg	0.1	20 ^{#5}	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	>C8-C10 Aliphatics	mg/kg mg/kg	0.1	<u> </u>	<0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1
	>C10-C12 Aliphatics >C12-C16 Aliphatics	mg/kg ma/ka	0.2	52 ^{#5}	<0.2 <4	<0.2 <4	<0.2 <4	<0.2 <4	<0.2 <4	<0.2 <4
	>C16-C21 Aliphatics	mg/kg	7		<7	<7	<7	<7	<7	<7
	>C16-C35 Aliphatics >C21-C35 Aliphatics	mg/kg mg/kg	7	37.000#5	<14 ^{#12} <7	<14 ^{#12} <7	<u><14^{#12}</u> <7	<u><14</u> ^{#12} <7	<14 ^{#12} <7	<14 ^{#+2} <7
	>C35-C40 Aliphatics	mg/kg	7		<7	<7	<7	<7	<7	<7
	>EC5-EC7 Aromatics	mg/kg mg/kg	0.1	130 ^{#5}	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	>EC7-EC8 Aromatics >EC8-EC10 Aromatics	mg/kg ma/ka	0.1	<u>310^{#5}</u> 18 ^{#5}	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
	>EC10-EC12 Aromatics	mg/kg	0.2	100 ^{#5}	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
	>EC12-EC16 Aromatics >EC16-EC21 Aromatics	mg/kg mg/kg	4	<u>980</u> *5 1.800 ^{#5}	<4 <7	<4 <7	<4 <7	<4 <7	<4 <7	<4 <7
	>EC21-EC35 Aromatics	mg/kg	7	1.900 ^{#5}	<7	<7	<7	<7	<7	<7
	>EC5-EC40 Aromatics	mg/kg mg/kg	26		<26	<26	<26	<26	<26	<26
	>C5-C40 Aliphatics & Aromatics	mg/kg mg/kg	52 0 1		<52 <0.1	<52 <0.1	<52 <0.1	<52 <0.1	<52 <0.1	<52 <0.1
	>C10-C25 Aliphatics	mg/kg	10		<10	<10	<10	<10	<10	<10
	>C25-C35 Aliphatics >EC6-EC10 Aromatics	mg/kg mg/kg	10 0.1		<10 <0.1	<10 <0.1	<10 <0.1	<10 <0.1	<10 <0.1	<10 <0.1
	>EC10-EC25 Aromatics	mg/kg	10		<10	<10	<10	<10	<10	<10
	Mineral Oil (C8-C40)	mg/kg mg/kg	30		<30	<30	<30	<10 <30	<30	<30
BTEX	Benzene Toluene	mg/kg mg/kg	0	0.13 ^{#5} 220 ^{#5}	0.008	0.005	<0.003	<0.003	<0.003	<0.003
	Ethylbenzene	mg/kg	0	29 ^{#5}	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
	Xylene (m & p) Xylene Total	mg/kg mg/kg	0.01	3 4 ^{#3}	<0.005	<0.005	<0.005 <0.008 ^{#7}	<0.005 <0.008 ^{#7}	<0.005	<0.005
	Xylene (o)	mg/kg	0	31 ^{#5}	<0.003	<0.003	<0.003	<0.003	< 0.003	<0.003
Oxygenates	MTBE	mg/kg mg/kg	0.02	23.4 ^{#6}	<0.002	<0.002	<0.017 <0.002	<0.025 <0.002	<0.017	<0.017 <0.002
Chlorinated Hydrocarbons	Chloromethane	mg/kg	0	0.00304 ^{#6}	0.014	0.014	< 0.003	< 0.003	< 0.003	< 0.003
	Chloroethane	mg/kg	0	<u>0.00031"</u> 3.06 ^{#6}	0.012	0.014	<0.002	<0.002	<0.002	<0.002
	1,1-dichloroethene	mg/kg mg/kg	0.01	0.0861 ^{#6}	<0.006 <0.007	<0.006 <0.007	<0.006	<0.006	<0.006	<0.006
	trans-1,2-dichloroethene	mg/kg	0	0.0678#6	0.008	0.008	<0.003	<0.003	<0.003	<0.003
	1,1-dichloroethane cis-1,2-dichloroethene	mg/kg mg/kg	0	0.839 ^{#6} 0.0403 ^{#6}	0.009 <0.003	0.008 <0.003	<0.003 <0.003	<0.003 <0.003	<0.003 <0.003	<0.003 <0.003
	Chloroform	mg/kg	0	0.4 ^{#5}	0.006	0.006	< 0.003	< 0.003	< 0.003	< 0.003
	Carbon tetrachloride	mg/kg mg/kg	0	<u> </u>	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003 <0.004
	Trichloroethene	mg/kg mg/kg	0	0.006 ^{#5}	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
	Tetrachloroethene	mg/kg	0	0.063 ^{#5}	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
	Sum of PCE and TCE TCE+DCE+VC	mg/kg mg/kg			<0.006 ^{#12} 0.026 ^{#8}	<0.006 ^{#12} 0.025 ^{#8}	<0.006 ^{#12}	<0.006 ^{#12}	<0.006 ^{#12}	<0.006 ^{#12}
1/00	PCE+TCE+DCE+VC	mg/kg			0.0275#8	0.0265 ^{#8}	<0.02 ^{#12}	<0.02 ^{#12}	<0.02 ^{#12}	<0.02 ^{#12}
VOC	2,2-dichloropropane Bromochloromethane	mg/kg mg/kg	0	150 ^{#1}	<0.004 <0.003	<0.004 <0.003	<0.004 <0.003	<0.004 <0.003	<0.004	<0.004 <0.003
	1,1-dichloropropene	mg/kg	0	a aaaa#5	<0.003	<0.003	<0.003	<0.003	<0.003	< 0.003
	1,2-dichloropropane	mg/kg mg/kg	0.01	0.0029 ⁴⁰ 0.00785 ^{#6}	<0.004	<0.004	<0.004 <0.006	<0.004 <0.006	<0.004	<0.004
	Dibromomethane Bromodichloromethane	mg/kg mg/kg	0	<u>23^{#1}</u>	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
	cis-1,3-dichloropropene	mg/kg	0	0.29	<0.003	<0.003	<0.003	<0.004	<0.003	<0.003
	trans-1,3-dichloropropene	mg/kg mg/kg	0	1 600 ^{#1}	<0.003 <0.003	<0.003 <0.003	<0.003 <0.003	<0.003 <0.003	<0.003 <0.003	<0.003 <0.003
	Chlorodibromomethane	mg/kg	0	0.73 ^{#1}	<0.003	<0.003	<0.003	< 0.003	< 0.003	< 0.003
	Styrene	mg/kg mg/kg	0	<u> </u>	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
	Bromoform	mg/kg mg/kg	0	1.82 ^{#6}	<0.003	<0.003	<0.003	<0.003	<0.003	< 0.003
	1,1,2,2-tetrachloroethane	mg/kg	0	4.12 1.4 ^{#5}	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
	1,2,3-trichloropropane	mg/kg mg/kg	0	0.0051 ^{#1} 14 1 ^{#6}	<0.004 <0.004	<0.004 <0.004	<0.004 <0.004	<0.004 <0.004	<0.004 <0.004	<0.004 <0.004
	1,3,5-trimethylbenzene	mg/kg	0	780 ^{#1}	< 0.003	< 0.003	< 0.003	< 0.003	<0.003	< 0.003
	1,2,4-trimethylbenzene	mg/kg mg/kg	0.01	<u>7,800</u> ^{#1} 0.144 ^{#6}	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
	sec-butylbenzene	mg/kg ma/ka	0	7.800 ^{#1}	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
	n-butylbenzene	mg/kg	0	3.900 ^{#1}	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
	1,2-dibromo-3-chloropropane	mg/kg mg/kg	0	<u>0.0053</u> ^{#1} 0.11 ^{#5}	<0.004 <0.004	<0.004 <0.004	<0.004 <0.004	<0.004 <0.004	<0.004	<0.004 <0.004
	1,2-Dichloroethene	mg/kg		0.2 ^{#3}	0.0095 ^{#8}	0.0095 ^{#8}	<0.006 ^{#12}	<0.006 ^{#12}	<0.006 ^{#12}	<0.006 ^{#12}
РАН	Naphthalene	mg/kg	0.03	0.85 ^{#5}	<0.027	<0.027	<0.012	<0.012	<0.012	<0.012
	Acenaphthylene Acenaphthene	mg/kg mg/ka	0.03	1.800 ^{#5} 1 800 ^{#5}	<0.03 <0.05	<0.03 <0.05	<0.03 <0.05	<0.03 <0.05	<0.03 <0.05	<0.03 <0.05
	Fluorene	mg/kg	0.04	2.100 ^{#5}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
	Anthracene	тту/кg mg/kg	0.03	<u> </u>	<0.03 <0.04	<0.03 <0.04	<0.03	<0.03 <0.04	<u>0.07</u> < <u>0.04</u>	<0.06
	Fluoranthene	mg/kg	0.03	1.500 ^{#5}	<0.03	<0.03	<0.03	< 0.03	0.06	0.04
	Benz(a)anthracene	mg/kg	0.03	<u>3./00"~</u> 11 ^{#5}	<0.03	<0.03	<0.03	<0.03	<0.05	<0.03
	Chrysene	mg/kg ma/ka	0.02	29 ^{#5}	0.03	<0.02	<0.02	<0.02	0.03	<0.02
	Indeno(1,2,3-c,d)pyrene	mg/kg	0.04	44 ^{#5}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
	Benzo(g,h,i)perylene	mg/kg	0.04	<u>0.31*°</u> 350 ^{#5}	0.08 <0.04	0.05 <0.04	<0.04 <0.04	<0.04 <0.04	<0.04 	<0.04 <0.04
	Benzo(b)fluoranthene	mg/kg	0.05	3.9 ^{#5}	<0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05
	Benzo(b)&(k)fluoranthene	mg/kg	0.02	110"	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
	Benzo(j)fluoranthene	mg/kg mg/kg	1 0 22		<1 <0.22	<1 <0.22	<1 <0.22	<1 <0.22	<1 <0.22	<1 <0.22
	PAHs (sum of 4)	mg/kg	0.24		<0.15 ^{#12}	<0.15 ^{#12}	<0.15 ^{#12}	<0.15 ^{#12}	<0.15 ^{#12}	<0.15 ^{#12}
	PAH 17 Iotal benzo(g,h,i)pervlene + indeno(1.2.3-cd)pvrene	mg/kg mg/ka	0.64		<0.64 <0.08 ^{#12}	<0.64 <0.08 ^{#12}	<0.64 <0.08 ^{#12}	<0.64 <0.08 ^{#12}	<0.64 <0.08 ^{#12}	<0.64 <0.08 ^{#12}
81/00	Coal Tar (Bap as surrogate marker)	mg/kg	0.01	1.2 ^{#5}	<0.04 ^{#12}	<0.04 ^{#12}	<0.04 ^{#12}	<0.04 ^{#12}	<0.04 ^{#12}	< 0.04 #12
SVOC	2-methylnaphthalene	mg/kg	0.04	2 30 ^{#1}	<0.04 <0.01	<0.04 <0.01	<0.04 <0.01	<0.04 <0.01	<0.04 <0.01	<0.04
	4-bromophenyl phenyl ether	mg/kg	0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	Azobenzene	mg/kg	0.01	5.6 ^{#1}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	Bis(2-chloroethoxy) methane Bis(2-chloroethvl)ether	mg/kg ma/ka	0.01	180 ^{#1}	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01
	Carbazole	mg/kg	0.01	No criteria ^{#6}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	Hexachlorocyclopentadiene	mg/kg mg/kg	0.01	<u>72</u> ^{#1} 370 ^{#1}	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01	<0.01
	Hexachloroethane	mg/kg	0.01	0.0767 ^{#6}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

AECOM

Page 1 of 2

Table 2 Soil Analytical Results - Boreholes City Block 2

Location_Code	BH10	BH11	BH12	BH13	BH14	BH9
Sample_Depth_Range m BGL	4-5	4-5	4-5	4-5	4-5	4-5
Sampled_Date_Time	13/07/2015	15/07/2015	10/07/2015	21/07/2015	30/06/2015	09/07/2015
Lab_Report_Number	JEL-15-10240-1	JEL-15-10240-1	JEL-15-10042-1	JEL-15-10536-1	JEL-15-9506-1	JEL-15-9992-1
Matrix_Description	Gravel	Silt	Gravel	Silt	Gravel	Silt
Sample_Elevation top m OD	-1.718	-1.788	-1.656	-1.339	-1.639	-1.316
Sample_Elevation bottom m OD	-2.718	-2.788	-2.656	-2.339	-2.639	-2.316
Sample_Elevation mean m OD	-2.218	-2.288	-2.156	-1.839	-2.139	-1.816

Chem_Group	ChemName	output unit	EQL	GAC_HH_RES-PL_SAND_0.58-						
				1.45%TOC						
Phenolics	2-methylphenol	mg/kg	0.01	3.100 ^{#1}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	2-nitrophenol	mg/kg	0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	2,4-dimethylphenol	mg/kg	0.01	123 ^{#6}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
		mg/kg	0.01	<u>6.200</u> ^{#1}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	4-metryphenol	mg/kg	0.01	6,200	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	Phenol	mg/kg	0.01	320#5	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	2-chloronaphthalene	mg/kg	0.01	1 42 ^{#6}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
PCBs	Total PCB 7 Congeners_WAC	mg/kg	0.04		<0.035	<0.035	<0.035	<0.035	<0.035	<0.035
	PCB 118	mg/kg	0.01	0.12 ^{#1}	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005
	PCB 28	mg/kg	0.01		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
	PCB 52	mg/kg	0.01		<0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005
	PCB 101	mg/kg	0.01		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
	PCB 138	mg/kg	0.01		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
	PCB 180	mg/kg	0.01		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
	Total PCB 7 Congeners	mg/kg	0.04	0.2 ^{#3}	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035
Amino Aliphatics	N-nitrosodi-n-propylamine	mg/kg	0.01	0.076 ^{#1}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Anilines	2-nitroaniline	mg/kg	0.01	610 ^{#1}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	3-nitroaniline	mg/kg	0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	4-chloroaniline	mg/kg	0.01	2.7#1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Evologiuse		mg/kg	0.01	27 ^{#1}	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
Explosives	2,4-Difilitolouene	mg/kg	0.01	167 ^{**}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	Nitrobenzene	mg/kg	0.01		<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01
Halogenated Benzenes	Chlorobenzene	mg/ka	0	ם. ו ח 16 ^{#5}	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
	Bromobenzene	mg/kg	0	0.324 ^{#6}	<0.002	<0.002	< 0.002	< 0.002	< 0.002	< 0.002
	2-chlorotoluene	mg/kg	0	1.600 ^{#1}	<0.003	<0.003	< 0.003	< 0.003	< 0.003	< 0.003
	4-chlorotoluene	mg/kg	0	1.600 ^{#1}	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
	1,3-dichlorobenzene	mg/kg	0	0.15 ^{#5}	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
	1,4-dichlorobenzene	mg/kg	0	22 ^{#5}	<0.004	<0.004	< 0.004	< 0.004	< 0.004	< 0.004
	1,2-dichlorobenzene	mg/kg	0	8.4 ^{#5}	< 0.004	< 0.004	<0.004	<0.004	< 0.004	< 0.004
	1,2,4-trichlorobenzene	mg/kg	0.01	0.91**	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007
	Heyachlorobenzene	mg/kg	0.01	0.53	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007
Halogenated Hydrocarbons	Dichlorodifluoromethane	mg/kg	0.01	87 ^{#1}	< 0.002	<0.002	<0.002	<0.002	<0.002	<0.002
	Bromomethane	mg/kg	0	6.8 ^{#1}	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001
	Trichlorofluoromethane	mg/kg	0	730 ^{#1}	0.004	0.004	<0.002	<0.002	<0.002	<0.002
	1,2-dibromoethane	mg/kg	0	0.036 ^{#1}	<0.003	<0.003	<0.003	< 0.003	< 0.003	< 0.003
Halogenated Phenols	2-chlorophenol	mg/kg	0.01	390^{#1}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	2,4-dichlorophenol	mg/kg	0.01	180 ^{#1}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	2,4,5-trichlorophenol	mg/kg	0.01	<u>6.200</u> ^{#1}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	2,4,0-Inchiorophenol	mg/kg mg/kg	0.01	<u>48</u> "' 26 ^{#5}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phthalates	Bis(2-ethylbexyl) phthalate	mg/kg	0.01	20 2 670 ^{#6}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	Butyl benzyl phthalate	mg/kg	0.01	42 100 ^{#6}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	Di-n-butyl phthalate	mg/kg	0.01	445 ^{#6}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	Di-n-octyl phthalate	mg/kg	0.01	3.390 ^{#6}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	Diethylphthalate	mg/kg	0.01	1.150#6	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	Dimethyl phthalate	mg/kg	0.01	<u>16.4</u> ^{#3}	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
Suiveniis		mg/kg	U.U1 1	560 [*] '	<0.01	<0.01 x	<0.01	<0.01	<0.01	<0.01
Metais	Arsenic	mg/kg	0.5	<u>555</u> 40 ^{#5}	∠ 146 7	264 2	 _32.8	∠ 14 2	24.1	∠ 75
	Barium	mg/ka	1	40 1 3/0 ^{#6}	23	31	36	37	44	29
	Cadmium	mg/kg	0.1	85 ^{#5}	2.1	0.8	6.4	0.4	0.8	2
	Chromium (III+VI)	mg/kg	0.5		74.8	72.9	81.5	66.3	56	83.3
	Copper	mg/kg	1	7.100 ^{#5}	20	71	77	45	20	5
	Lead	mg/kg	5	310#4	92	43	447	49	24	17
		mg/kg	0.1	56 ^{#5}	<0.1	0.8	<0.1	<0.1	<0.1	<0.1
	Ivioiybaenum Nickol	ing/kg	0.1	673 ^{#°}	3.2	b./	1./	4.8	1 10 2	/.1 24 5
	Selenium	mg/kg mg/kg	0.7	180 ^{°°} 420 ^{#5}	0.1 Q	14.0	6.UC	20.9 1	10.3 -1	24.0 2
	Zinc	ma/ka	5	400 40000 ^{#5}	437	40	1726	155	79	
	Chromium (hexavalent)	mg/kg	0.3	6 ^{#5}	<0.3	0.4	<0.3	<0.3	<0.3	<0.3
	Chromium (Trivalent)	mg/kg	0.5	910 ^{#5}	74.8	72.5	81.5	66.3	56	83.3
Organics	тос	%	0.02		0.7	0.54	0.8	0.86	0.29	1.72
Inorganics	Moisture Content 105C	%	0.1		24	26.9	40.1	38.8	7.4	78.5
	pH (Lab)	pH_Units	0.01		7.61	7.42	8	7.91	8.25	8.04
Asbestos	Asbestos Type	None			None	None	None	None	None	None
	Asbestos Lype 2	None			None	None	None	None	None	None
	Asbestos Level	None			None	None	None	None	None	None
	Asbestos Containing Material (2)	None			None	None	None	None	None	None

Comments #1 USEPA RSL #2 Dutch Serious 2009

#3 Dutch Intervention 2009

#4 Defra C4SL 12/2014

#5 AECOM (modified LQM/CIEH S4ULs)

#6 AECOM (modified EIC)

#7 ESDAT Combined. Some analytes are reported multiple times; the lowest non-detect or the highest detect is used. Some Analytes are missing from this Combined Compound.
#8 ESDAT Combined with Non-Detect Multiplier of 0.5.

#9 No interpretation possible#12 ESDAT Combined.

GAC: Generic Assessment Criteria

(blank): No assessment criteria available Sol: Unacceptable risk not achieved due to calculated target above solubility limit

Key GAC_HH_RES-PL_SAND_0.58-1.45%TOC Exceedance of HH Soil. Residential without Plant Uptake. Sand. TOC >=0.58 to <1.45%

AECOM

Page 2 of 2
Table 3Groundwater Analytical Results - Human HealthCity Block 2

Location_Code	BH12	BH14	BH9		
Sampled_Date_Time	12/08/2015	12/08/2015	12/08/2015		
Lab_Report_Number	15-11357-2-200815	15-11357-2-200815	15-11357-1-200815		
Sample_Type	Normal	Normal	Normal		
Location_Type	Borehole	Borehole	Borehole		
Monitoring_Zone	City Block 2	City Block 2	City Block 2		
Well	BH12	BH14	BH9		
Monitoring_Unit	Gravel	Gravel	Gravel		

Chem_Group	ChemName	output unit	EQL	GAC_HH_RES_SAND			
ТРН	>C5-C6 Aliphatics	µg/L	5	14.700 ^{#3}	<5	<5	<5
	>C6-C8 Aliphatics	µg/L	5	Sat ^{#3}	<5	<5	<5
	>C8-C10 Aliphatics	µg/L	5	426 ^{#3}	<5	<5	<5
	>C12-C16 Aliphatics	ua/L	10	Sat ^{#3}	<10	<10	<10
	>C16-C21 Aliphatics	µg/L	10	Gat	<10	<10	<10
	>C16-C35 Aliphatics	µg/L		Sat ^{#3}	<20 ^{#6}	<20 ^{#6}	<20 ^{#6}
	>C21-C35 Aliphatics	µg/L	10		<10	<10	<10
	>C5-C35 Aliphatics	µg/L	10	4 500 000 ^{#3}	<10	<10	<10
	>EC7-EC8 Aromatics	ug/L	5	Sat ^{#3}	<5	<5	<5
	>EC8-EC10 Aromatics	μg/L	5	14.000 ^{#3}	<5	<5	<5
	>EC10-EC12 Aromatics	µg/L	5	Sat ^{#3}	<5	<5	<5
	>EC12-EC16 Aromatics	µg/L	10	Sat ^{#3}	<10	<10	<10
	>EC10-EC21 Alomatics	µg/∟ ug/l	10	Sat ^{#3}	<10	<10	<10
	>EC5-EC35 Aromatics	µg/L	10	Sat	<10	<10	<10
	>C5-C35 Aliphatics & Aromatics	µg/L	10		<10	<10	<10
BTEX	Benzene	µg/L	0.5	1.570 ^{#3}	<0.5	<0.5	<0.5
	Toluene	µg/L ug/l	0.5	<u>Sat</u> ^{**}	<0.5	<0.5	<0.5
	Xylene (m & p)	µg/L	1	83.200	<1	<1	<1
	Xylene Total	μg/L			<1.5 ^{#4}	<1.5 ^{#4}	<1.5 ^{#4}
	Xylene (o)	µg/L	0.5	92.100 ^{#3}	<0.5	<0.5	<0.5
Ovuganataa		µg/L	0.1		<1.5 ^{#4}	<1.5#4	<1.5 ^{#4}
Chlorinated Hydrocarbons	Chloromethane	µg/∟ µg/L	3		<0.1	<0.1	<0.1
	Vinyl chloride	μg/L	0.1	4.44 ^{#3}	<0.1	<0.1	<0.1
	Chloroethane	µg/L	3		<3	<3	<3
	1,1-dichloroethene	µg/L	3		<3	<3	<3
	ucnioromemane trans-1.2-dichloroethene	µg/L ug/l	3		<3	<3	<3
	1,1-dichloroethane	µg/L	3		<3	<3	<3
	cis-1,2-dichloroethene	µg/L	3		<3	<3	<3
	Chloroform	µg/L	2	5.660 ^{#3}	<2	<2	<2
	1,1,1-trichloroethane	µg/L	2	24.600^{#3}	<2	<2	<2
	Carbon tetrachioride	µg/L ug/l	2	<u>43.5^{**3}</u>	<2	<2	<2
	1,1,2-trichloroethane	µg/L	2	44./	<2	<2	<2
	Tetrachloroethene	μg/L	3	288^{#3}	<3	<3	<3
	Sum of PCE and TCE	µg/L		10 ^{#1}	<6#6	<6#6	<6#6
		µg/L µg/l			<12.1 ^{#6}	<12.1 ^{#6}	<12.1 ^{#6}
VOC	2.2-dichloropropane	µg/L ug/L	1		<15.1 ^{//°} <1	<15.1 ^{***} <1	<15.1 ^{"°} <1
	Bromochloromethane	µg/L	2		<2	<2	<2
	1,1-dichloropropene	µg/L	3		<3	<3	<3
	1,2-dichloroethane	µg/L	2	53.2 ^{#3}	<2	<2	<2
	1,2-dichloropropane	µg/L	2	0.1*'	<2	<2	<2
	Bromodichloromethane	µg/L	2		<2	<2	<2
	cis-1,3-dichloropropene	μg/L	2		<2	<2	<2
	trans-1,3-dichloropropene	µg/L	2		<2	<2	<2
	1,3-dichloropropane	µg/L	2	0.1 ^{#1}	<2	<2	<2
	1 1 1 2-tetrachloroethane	µg/L ug/l	2	see trihalomethanes"	<2	<2	<2
	Styrene	µg/L	2	1.750	<2	<2	<2
	Bromoform	µg/L	2	see trihalomethanes ^{#1}	<2	<2	<2
	Isopropylbenzene	µg/L	3	#2	<3	<3	<3
	1,1,2,2-tetrachioroethane	µg/L µg/l	4	6.900**3	<4	<4	<4
	n-propylbenzene	μg/L	3		<3	<3	<3
	1,3,5-trimethylbenzene	µg/L	3		<3	<3	<3
	tert-butylbenzene	µg/L	3		<3	<3	<3
	ı,∠,4-trimetnyibenzene	µg/L ug/l	3		<3	<3	<3
	p-isopropyltoluene	ua/L	3		<3	<3	<3
	n-butylbenzene	µg/L	3		<3	<3	<3
	1,2-dibromo-3-chloropropane	µg/L	2	0.1 ^{#1}	<2	<2	<2
	Hexachlorobutadiene	µg/L	1	15.5 ^{#3}	<1	<1	<1
		µg/L ug/l		400 ^{#1}	<6 ^{~~}	<6 ^{~~}	<6 ⁷⁰
PAH	Naphthalene	µg/L	1	911 ^{#3}	<0 <1	<0 <1	<0 <1
	Acenaphthylene	µg/L	0.5	Sat ^{#3}	<0.5	<0.5	<0.5
	Acenaphthene	µg/L	1	Sat ^{#3}	<1	<1	<1
	Huorene Phenanthrene	µg/L	0.5	Sat ^{#3}	<0.5	<0.5	<0.5
	Anthracene	µg/L ug/L	0.5	<u>Sat</u> ^{**}	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
	Fluoranthene	μg/L	0.5	Sat ^{#3}	<0.5	<0.5	<0.5
	Pyrene	µg/L	0.5	Sat ^{#3}	<0.5	<0.5	<0.5
	Benz(a)anthracene	µg/L	0.5	Sat ^{#3}	<0.5	<0.5	<0.5
	Unrysene Benzo(a) pyrene	µg/L ug/l	0.5 1	Sat ^{#3}	<0.5	<0.5	<0.5
	Indeno(1,2,3-c.d)pyrene	µg/L	1	Sat ^{#3}	<1	<1	<1
	Dibenz(a,h)anthracene	µg/L	0.5	Sat ^{#3}	<0.5	<0.5	<0.5
	Benzo(g,h,i)perylene	µg/L	0.5	Sat ^{#3}	<0.5	<0.5	<0.5
	Benzo(b)&(k)fluoranthene	µg/L	1	#1	<1	<1	<1
	$rA\Pi s$ (sum of 4) benzo(a h i)nervlene + indepo(1.2.3-cd)pyrepo	µg/L ug/l		0.1*'	<1.5 ^{#°}	<1.5 ^{#3}	< 1.5 ^{#5}
	Coal Tar (Bap as surrogate marker)	µg/L		Sat ^{#3}	<1 ^{#6}	<1 ^{#6}	<1.5 <1 ^{#6}

Table 3Groundwater Analytical Results - Human HealthCity Block 2

Location_Code	BH12	BH14	BH9
Sampled_Date_Time	12/08/2015	12/08/2015	12/08/2015
Lab_Report_Number	15-11357-2-200815	15-11357-2-200815	15-11357-1-200815
Sample_Type	Normal	Normal	Normal
Location_Type	Borehole	Borehole	Borehole
Monitoring_Zone	City Block 2	City Block 2	City Block 2
Well	BH12	BH14	BH9
Monitoring_Unit	Gravel	Gravel	Gravel

Chem_Group	ChemName	output unit	EQL	GAC_HH_RES_SAND			
SVOC	2-methylnaphthalene	µg/L	1		<1	<1	<1
	4-bromophenyl phenyl ether	µg/L	1		<1	<1	<1
	4-chlorophenyl phenyl ether	µg/L	1		<1	<1	<1
	Azobenzene	µg/L	0.5		<0.5	<0.5	<0.5
	Bis(2-chloroethoxy) methane	µg/L	0.5		<0.5	<0.5	<0.5
	Bis(2-chloroethyl)ether	µg/L	1		<1	<1	<1
	Carbazole	µg/L	0.5		<0.5	<0.5	<0.5
	Dibenzofuran	µg/L	0.5		<0.5	<0.5	<0.5
	Hexachlorocyclopentadiene	µg/L	1		<1	<1	<1
	Hexachloroethane	µg/L	1		<1	<1	<1
Dhanaliaa	I otal Methoxychior	µg/i	0.01		<0.01	- -	-
Phenolics		µg/L	0.5		<0.5	<0.5	<0.5
	2.4 dimethylphenol	µg/L	0.5		<0.5	<0.5	<0.5
	4-chloro-3-methylphenol	ug/L	0.5		<0.5	<0.5	<0.5
	4-methylphenol		1		<0.0	<1	<1
	4-nitrophenol	ug/l	10		<10	<10	<10
	Phenol	ua/L	1	976 000 ^{#3}	<1	<1	<1
	2-chloronaphthalene	µg/L	1		<1	<1	<1
Amino Aliphatics	N-nitrosodi-n-propylamine	µg/L	0.5		<0.5	<0.5	<0.5
Anilines	2-nitroaniline	µg/L	1		<1	<1	<1
	3-nitroaniline	µg/L	1		<1	<1	<1
Anilines Anilines Explosives Halogenated Benzenes Halogenated Hydrocarbons Halogenated Phenols	4-chloroaniline	µg/L	1		<1	<1	<1
	4-nitroaniline	µg/L	0.5		<0.5	<1 <1 <1 <1 <1 <1 <0.5 <0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	
Explosives	2,4-Dinitrotoluene	µg/L	0.5		<0.5	<0.5	<0.5
xplosives	2,6-dinitrotoluene	µg/L	1		<1	<1	<1
	Nitrobenzene	µg/L	1		<1	<1	<1 <1 <0.5 <0.5 <0.5 <0.5 <0.5 <1 <1 <1 <0.5 <0.5 <1 <1 <0.5 <1 <1 <10 <1 <1 <10 <1 <1 <0.5 <0.5 <1 <1 <1 <1 <1 <1 <1 <1
Halogenated Benzenes	Chlorobenzene	µg/L	2	747 ^{#3}	<2	<2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Bromobenzene	µg/L	2		<2	<2	<2
	2-chlorotoluene	µg/L	3		<3	<3	<3
	4-chlorotoluene	µg/L	3		<3	<3	<3
	1,3-dichlorobenzene	µg/L	1	238#3	<1	<1	<1
	1,4-dichlorobenzene	µg/L	1	37.000#3	<1	<1	<1
	1,2-dichlorobenzene	µg/L	1	13.900**3	<1	<1	<1
	1,2,4-trichlorobenzene	µg/L	2	495**	<1	<1	<1
	Hexachlorobenzene	µg/L	3	<u>247</u> ^{#3}	<0	<3	<0
Halogenated Hydrocarbons	Dichlorodifluoromethane		2	Sat	<2	<2	<2
nalogenated Hydrocarbons	Bromomethane		1		<1	<1	<1
	Trichlorofluoromethane	ua/L	3		<3	<3	<3
	1.2-dibromoethane	ua/L	2	0.1 ^{#1}	<2	<2	<2
Halogenated Phenols	2-chlorophenol	µg/L	1	<u> </u>	<1	<1	<1
5	2,4-dichlorophenol	µg/L	0.5		<0.5	<0.5	<0.5
Phenolics Amino Aliphatics Anilines Explosives Halogenated Benzenes Halogenated Hydrocarbons Halogenated Phenols Phthalates Solvents Metals	2,4,5-trichlorophenol	µg/L	0.5		<0.5	<0.5	<0.5
	2,4,6-trichlorophenol	µg/L	1		<1	<1	<1
	Pentachlorophenol	µg/L	1	Sat ^{#3}	<1	<1	<1
Phthalates	Bis(2-ethylhexyl) phthalate	µg/L	5		<5	<5	<5
	Butyl benzyl phthalate	µg/L	1		<1	<1	<1
	Di-n-butyl phthalate	µg/L	1.5		<1.5	<1.5	<1.5
	Di-n-octyl phthalate	µg/L	1		<1	<1	<1
	Diethylphthalate	µg/L	1		<1	<1	<1
O al contra	Dimethyl phthalate	µg/L	1		<1	<1	<1
Solvents	Isophorone	µg/L	0.5	#2	<0.5	<0.5	<0.5
Metals	Arsenic (Filtered)	µg/L	1.9	No path ^{**}	4/5.1	-	23.7
	Benyllium (Filtered)	µg/L	0.5		-0.5	-	20.5
	Boron (Filtered)		2	No path No path ^{#2}	476	-	168
	Cadmium (Filtered)		0.03	No path	1 71	_	0.33
	Chromium (III+VI) (Filtered)	ug/L	0.2		<0.2	-	0.6
	Copper (Filtered)	µg/L	3	No nath ^{#2}	<3	-	<3
	Lead (Filtered)	µg/L	0.4	No path ^{#2}	1	-	3.1
	Mercury (Filtered)	µg/L	0.5	No path ^{#2}	<0.5	-	<0.5
	Nickel (Filtered)	µg/L	0.2	No path ^{#2}	0.4		0.9
	Selenium (Filtered)	µg/L	1.2	No path ^{#2}	<1.2	-	<1.2
	Vanadium (Filtered)	µg/L	0.6	No path ^{#2}	<0.6	-	2.2
	Zinc (Filtered)	µg/L	1.5	No path ^{#2}	45.1	-	174
	Chromium (hexavalent)	µg/L	2	No path ^{#2}	<2	-	<2
	Chromium (Trivalent) (Filtered)	µg/L	2	No path ^{#2}	<2	-	<2

Comments

#1 WS Regs 2010 (Eng/Wal)

#2 AECOM (No path)

#3 AECOM (modified LQM/CIEH S4ULs)

#4 ESDAT Combined. Some analytes are reported multiple times; the lowest non-detect or the highest detect is used. Some Analytes are missing from this Combined Compound.

#6 ESDAT Combined. Some Analytes are missing from this Combined Compound.

#7 ESDAT Combined.

GAC: Generic Assessment Criteri Exceedance of HH GW. Residential. Sand

(blank): No assessment criteria available

Sat: Unacceptable risk not achieved due to calculated saturation of vapour pathway

Sol: Unacceptable risk not achieved due to calculated target above solubility limit

- : Not analysed

KEY

GAC_HH_RES_SAND Exceedance of HH Water. Residential. Sand.

AECOM

Table 4 Groundwater Analytical Results - Controlled Water City Block 2

Location_Code	BH12	BH14	BH9		
Sampled_Date_Time	12/08/2015	12/08/2015	12/08/2015		
Lab_Report_Number	15-11357-2	15-11357-2	15-11357-1		
Sample_Type	Normal	Normal	Normal		
Location_Type	Borehole	Borehole	Borehole		
Monitoring_Zone	City Block 2	City Block 2	City Block 2		
Well	BH12	BH14	BH9		
Monitoring_Unit	Gravel	Gravel	Gravel		

Chem_Group	ChemName	output unit	EQL	GAC_WTV_IE_DWS	GAC_WTV_IE_ EQS -Fresh	GAC_WTV_IE_GTV			
ТРН	>C5-C6 Aliphatics	µg/L	5	15.000 ^{#2}		15.000 ^{#2}	<5	<5	<5
	>C6-C8 Aliphatics	µg/L	5	15.000 ^{#2}		15,000 ^{#2}	<5	<5	<5
	>C8-C10 Aliphatics	µg/L	5	300 ^{#2}		300 ^{#2}	<5	<5	<5
	>C10-C12 Aliphatics	µg/L	5	300 ^{#2}		300 ^{#2}	<5	<5	<5
	>C12-C16 Aliphatics	µg/L	10	300**2		300 ^{#2}	<10	<10	<10
	>C16-C21 Aliphatics	µg/L	10	300**		300**	<10	<10	<10
	>C21-C35 Aliphatics	µg/L ug/l	10	200#2		200 ^{#2}	<20	<20	<20
	>C5-C35 Aliphatics	ug/L	10	300		300	<10	<10	<10
	>EC5-EC7 Aromatics	µg/L	5	1 ^{#15}	10 ^{#12}	0.75 ^{#11}	<5	<5	<5
	>EC7-EC8 Aromatics	µg/L	5	10 ^{#14}	10 ^{#12}	10 ^{#14}	<5	<5	<5
	>EC8-EC10 Aromatics	µg/L	5	300 ^{#2}		300 ^{#2}	<5	<5	<5
	>EC10-EC12 Aromatics	µg/L	5	90 ^{#2}		90#2	<5	<5	<5
	>EC12-EC16 Aromatics	µg/L	10	90 ^{#2}		90 ^{#2}	<10	<10	<10
	>EC16-EC21 Aromatics	µg/L	10	90 ^{#2}		90**2	<10	<10	<10
	>EC5-EC35 Aromatics	µg/L ug/l	10	90		90	<10	<10	<10
	>C5-C35 Aliphatics & Aromatics	ug/L	10	10 ^{#14}	10 ^{#13}	10 ^{#14}	<10	<10	<10
BTEX	Benzene	µg/L	0.5	1 ^{#15}	10 ^{#12}	0.75 ^{#11}	<0.5	<0.5	<0.5
	Toluene	μg/L	0.5	10 ^{#14}	10 ^{#12}	10 ^{#14}	<0.5	<0.5	<0.5
	Ethylbenzene	µg/L	0.5	10 ^{#14}	10 ^{#13}	10 ^{#14}	<0.5	<0.5	<0.5
	Xylene (m & p)	µg/L	1		#40		<1	<1	<1
1	Xylene I otal	µg/L	0.5	10 ^{#14}	10 ^{#12}	10 ^{#14}	<1.5 ^{#18}	<1.5 ^{#18}	<1.5 ^{#18}
1		µg/L	0.5	10*'*	10*'2	10"'*	<u.5< td=""><td><u.5< td=""><td><u.5< td=""></u.5<></td></u.5<></td></u.5<>	<u.5< td=""><td><u.5< td=""></u.5<></td></u.5<>	<u.5< td=""></u.5<>
Oxygenates	INTRE	ua/l	01	20 ^{#14}	5 100 ^{#9}	20 ^{#14}	<1.5 <0.1	<1.5	<1.5
Chlorinated Hydrocarbons	Chloromethane	µg/L	3	20 ^{#3}	0.100	20 ^{#3}	<3	<3	<3
	Vinyl chloride	µg/L	0.1	0.5 ^{#15}		0.375 ^{#11}	<0.1	<0.1	<0.1
1	Chloroethane	µg/L	3	21.000 ^{#5}		21,000 ^{#5}	<3	<3	<3
1	1,1-dichloroethene	µg/L	3	30 ^{#14}		30 ^{#14}	<3	<3	<3
	Dichloromethane	µg/L	3	10 ^{#14}	20 ^{#12}	10 ^{#14}	<3	<3	<3
	trans-1,2-dichloroethene	µg/L	3	30^{#14}		30 ^{#14}	<3	<3	<3
	1,1-dichloroethane	µg/L	3	2.7 ^{#3}		2.7 ^{#5}	<3	<3	<3
	Chloroform	µg/L	3 2	30 ^{" 14}	о <i>с</i> ^{#12}	<u>30</u> ^{#14}	< <u>></u>	<3	<3
	1.1.1-trichloroethane	ug/L	2	500 ^{#14}	<u>2.5</u> 500 ^{#13}	500 ^{#14}	<2	<2	<2
	Carbon tetrachloride	µg/L	2	2 ^{#14}	12 ^{#12}	2 ^{#14}	<2	<2	<2
	Trichloroethene	µg/L	3	e sum of PCE and TCE	10 ^{#12}	see sum of PCE and TCE ^{#11}	<3	<3	<3
	1,1,2-trichloroethane	µg/L	2	0.28 ^{#5}	400 ^{#4}	0.28 ^{#5}	<2	<2	<2
	Tetrachloroethene	µg/L	3	e sum of PCE and TC	10 ^{#12}	see sum of PCE and TCE ^{#11}	<3	<3	<3
	Sum of PCE and TCE	µg/L		10 ^{#15}		7.5 ^{#11}	<6#20	<6#20	<6#20
		µg/L					<12.1 ^{#20}	< <u>12.1</u> ^{#20}	< <u>12.1</u> ^{#20}
VOC	2 2-dichloropropage	µg/L µg/l	1				<15.1	<15.1***	<15.1***
	Bromochloromethane	ug/L	2	83 ^{#5}		83 ^{#5}	<2	<2	<2
	1,1-dichloropropene	µg/L	3	00			<3	<3	<3
	1,2-dichloroethane	µg/L	2	3 ^{#15}	10 ^{#12}	2.25 ^{#11}	<2	<2	<2
	1,2-dichloropropane	µg/L	2	0.1 ^{#1}		0.1 ^{#1}	<2	<2	<2
	Dibromomethane	µg/L	3	8 ^{#5}		8 ^{#5}	<3	<3	<3
	Bromodichloromethane	µg/L	2	0.13 ^{#5}		0.13#5	<2	<2	<2
	trans-1.3-dichloropropene	µg/L	2				<2	<2	<2
	1.3-dichloropropane	ug/L	2	0 1 ^{#1}		0 1 ^{#1}	<2	<2	<2
	Chlorodibromomethane	μg/L	2	see trihalomethanes ^{#1}		see tribalomethanes ^{#1}	<2	<2	<2
	1,1,1,2-tetrachloroethane	µg/L	2	0.57 ^{#5}		0.57 ^{#5}	<2	<2	<2
	Styrene	µg/L	2	20 ^{#3}	50 ^{#7}	20 ^{#3}	<2	<2	<2
1	Bromoform	µg/L	2	see trihalomethanes ^{#1}		see trihalomethanes ^{#1}	<2	<2	<2
	Isopropylbenzene	µg/L	3	450 ^{#5}		450 ^{#5}	<3	<3	<3
1	1,1,2,2-tetrachioroethane	µg/L ug/l	4	0.076**		0.076 ^{**}	<4 ~?	<4 ~3	<4 ~3
1	n-propylbenzene	ua/L	3	U.UUU/5 660 ^{#5}		0.000/0 - 660 ^{#5}	<3	<3	<3
1	1,3,5-trimethylbenzene	µg/L	3	120 ^{#5}		120 ^{#5}	<3	<3	<3
1	tert-butylbenzene	µg/L	3	690 ^{#5}		690 ^{#5}	<3	<3	<3
	1,2,4-trimethylbenzene	µg/L	3	15 ^{#5}		15#5	<3	<3	<3
	sec-butylbenzene	µg/L	3	2.000 ^{#5}		2.000#5	<3	<3	<3
		µg/L	3	4.000#5		4.000#5	<3	<3	<3
	1 2-dibromo-3-chloropropape	µg/L	3	1.000 ^{**}		1.000***	<3	<3	<3
	Hexachlorobutadiene	ug/L	1	0.1 0.1 ^{#14}	0 1 #12	0.1	<1	<1	<1
	1,2-Dichloroethene	µg/L		50 ^{#3}	0.1	50 ^{#3}	<6 ^{#20}	<6 ^{#20}	<6 ^{#20}
	Trihalomethanes	µg/L		100 ^{#15}		75 ^{#11}	<8#20	<8#20	<8#20
РАН	Naphthalene	µg/L	1	1 ^{#14}	2 .4 ^{#12}	1 ^{#14}	<1	<1	<1
	Acenaphthylene	µg/L	0.5	18 ^{#17}		18 ^{#17}	<0.5	<0.5	<0.5
	Acenaphthene	µg/L	1	18 ^{#17}		18 ^{#17}	<1	<1	<1
	Fluorene	µg/L	0.5	<u>12</u> ^{#17}		12**''	<0.5	<0.5	<0.5
1	Anthracene	µg/∟ ua/l	0.5	4	∩ 1 #12	4 10.000 ^{#14}	<0.5 <0.5	<0.0	<0.5
	Fluoranthene	ug/L	0.5	1#14	0.1 0.1 ^{#12}	1#14	<0.5	<0.5	<0.5
1	Pyrene	µg/L	0.5	9 ^{#17}	0.1	9 ^{#17}	<0.5	<0.5	<0.5
	Benz(a)anthracene	µg/L	0.5	0.1 ^{#17}		0.1 ^{#17}	<0.5	<0.5	<0.5
	Chrysene	µg/L	0.5	1 ^{#17}		1 ^{#17}	<0.5	<0.5	<0.5
	Benzo(a) pyrene	µg/L	1	0.01 ^{#15}	0.05 #12	0.0075 ^{#11}	<1	<1	<1
	Indeno(1,2,3-c,d)pyrene	µg/L	1	0.05 ^{#14}	0.002 ^{#12}	0.05 ^{#14}	<1	<1	<1
1	Dibenz(a,h)anthracene	µg/L	0.5	0.01 ^{#17}	#12	0.01 ^{#1/}	<0.5	<0.5	<0.5
1	Benzo(b)&(k)fluoranthana	µg/L ug/l	U.5 1	0.05*'*	0.002 ***	0.05"'	<0.5	<0.5	<0.5
1	PAHs (sum of 4)	na/r	<u> </u>	0 4 ^{#15}	0.03	∩ 1 ^{#15}	<u> </u>	<u>∼1</u> ⊊ ^{#19}	<u>∼1</u> ⊊ ^{#19}
1	benzo(g,h,i)pervlene + indeno(1.2.3-cd)pvrene	µg/L		<u>U.1</u>	0 002 ^{#4}	U. I	<1.5 <1.5 ^{#20}	<1.5 <1.5 ^{#20}	<1.5 <1.5 ^{#20}
	Coal Tar (Bap as surrogate marker)	µg/L					<1#20	<1#20	<1#20

Table 4 Groundwater Analytical Results - Controlled Water City Block 2

Location_Code	BH12	BH14	BH9		
Sampled_Date_Time	12/08/2015	12/08/2015	12/08/2015		
Lab_Report_Number	15-11357-2	15-11357-2	15-11357-1		
Sample_Type	Normal	Normal	Normal		
Location_Type	Borehole	Borehole	Borehole		
Monitoring_Zone	City Block 2	City Block 2	City Block 2		
Well	BH12	BH14	BH9		
Monitoring_Unit	Gravel	Gravel	Gravel		

SNCC And Magnetion Opt 1 Opt Path 1 - - -	Chem_Group	ChemName	output unit	EQL	GAC_WTV_IE_DWS	GAC_WTV_IE_ EQS -Fresh	GAC_WTV_IE_GTV							
Product Data Data <thdata< th=""> Data Data <</thdata<>	SVOC	2-methylnaphthalene	µg/L	1	24 ^{#3}		24 ^{#3}	<1	<1	<1				
Product Interval (product (product 		4-bromophenyl phenyl ether	µg/L	1				<1	<1	<1				
Process Dist Dist< Dist Dist< Dist Dist< Dist< Dist< Dist< Dist< Dist< Dist< <thdis< th=""></thdis<>		4-chlorophenyl phenyl ether	µg/L	1	#5		#5	<1	<1	<1				
Biological and a second seco		Azobenzene	µg/L	0.5	0.12**		0.12*5	<0.5	<0.5	<0.5				
Phenologic No.1 No.0		Bis(2-chloroethoxy) methane	µg/L	0.5	<u>59</u> "°		<u>59</u> ^{**}	<0.5	<0.5	<0.5				
Points Ord Ord Type Points Ord Ord Ord Headdocarbane AL 1 Anti- - Anti- - </td <td></td> <td></td> <td>µg/L</td> <td>0.5</td> <td>0.014</td> <td></td> <td>0.014</td> <td><0.5</td> <td><0.5</td> <td><0.5</td>			µg/L	0.5	0.014		0.014	<0.5	<0.5	<0.5				
Percent Percent <t< td=""><td></td><td>Dibenzofuran</td><td>ug/L</td><td>0.5</td><td>7 0^{#5}</td><td></td><td>7 0^{#5}</td><td><0.5</td><td><0.5</td><td><0.5</td></t<>		Dibenzofuran	ug/L	0.5	7 0 ^{#5}		7 0 ^{#5}	<0.5	<0.5	<0.5				
Headbanethue pl. 1 0.9 ² c.1 c.1 c.1 Printogenethy pl. 0.1 0.1		Hexachlorocyclopentadiene	ug/L	1	7.9 21 ^{#5}		31 ^{#5}	<1	<1	<1				
Intervention Intervention<		Hexachloroethane	ug/L	1	0 9 ^{#5}		0 9 ^{#5}	<1	<1	<1				
Phenolog		Total Methoxychlor	µg/l	0.01	0.0		0.5	<0.01	-	-				
Barbone Barbone <t< td=""><td>Phenolics</td><td>2-methylphenol</td><td>µg/L</td><td>0.5</td><td>930^{#5}</td><td></td><td>930^{#5}</td><td><0.5</td><td><0.5</td><td><0.5</td></t<>	Phenolics	2-methylphenol	µg/L	0.5	930 ^{#5}		930 ^{#5}	<0.5	<0.5	<0.5				
Partners		2-nitrophenol	µg/L	0.5				<0.5	<0.5	<0.5				
4 class analysized spi. 0.6 1.00 ⁰ $q_1 q_1^{1/2}$ $q_1 d_2 d_2^{1/2}$ <th< td=""><td></td><td>2,4-dimethylphenol</td><td>µg/L</td><td>1</td><td>360^{#5}</td><td></td><td>360^{#5}</td><td><1</td><td><1</td><td><1</td></th<>		2,4-dimethylphenol	µg/L	1	360 ^{#5}		360 ^{#5}	<1	<1	<1				
Handproband Intro Algebraid Landbroid Landbroid 		4-chloro-3-methylphenol	µg/L	0.5	1.400 ^{#5}	40 ^{#4}	1.400 ^{#5}	<0.5	<0.5	<0.5				
handback Particulation 		4-methylphenol	µg/L	1	1,900 ^{#5}		1,900 ^{#5}	<1	<1	<1				
Intervi Optimization		4-nitrophenol	µg/L	10				<10	<10	<10				
Demo Apphates Participantial Participantial Participantial Participantial Participantial Animove Animove Participantial Paritipantial Participantial Part		Phenol	µg/L	1	0.5 ^{#14}	$8^{\#12}$	0.5 ^{#14}	<1	<1	<1				
Affinition (Particulate Applymention) (p) (1) (p) (p) (p) (p) <th< td=""><td></td><td>2-chloronaphthalene</td><td>µg/L</td><td>1</td><td>750#5</td><td></td><td>750#5</td><td><1</td><td><1</td><td><1</td></th<>		2-chloronaphthalene	µg/L	1	750#5		750#5	<1	<1	<1				
Animes Participantine Participantine<	Amino Aliphatics	N-nitrosodi-n-propylamine	µg/L	0.5	0.011 ^{#5}		0.011#5	<0.5	<0.5	<0.5				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Anilines	2-nitroaniline	µg/L	1	190*3		190*5	<1	<1	<1				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			µg/L	1	o.o.o#5		o o o#5	<1	<1	<1				
Explosive 2.4-Districtions pol_ 1. 25 p_{14}^{20} (b) p_{14}^{20} (c) $p_{14}^{$			µg/L	0.5	0.36**		0.36	<0.5	<0.5	<0.5				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Explosives	2 4-Dinitrotoluene	µg/L	0.5	<u>3.8</u>		3.8 0.24 ^{#5}	<0.5	<0.5	<0.5				
$ \begin{array}{ $	Explosives	2.6-dinitrotoluene	μg/L	1	0.24		0.049 ^{#5}	<0.5	<0.5	<0.5				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Nitrobenzene	ug/L	1	10 ^{#14}		10 ^{#14}	<1	<1	<1				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Halogenated Benzenes	Chlorobenzene	ug/L	2	1 ^{#14}	1 5 ^{#12}	1 ^{#14}	<2	<2	<2				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Bromobenzene	ug/L	2	62 ^{#5}	1.0	62 ^{#5}	<2	<2	<2				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		2-chlorotoluene	µg/L	3	240 ^{#5}		240 ^{#5}	<3	<3	<3				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		4-chlorotoluene	µg/L	3	250 ^{#5}		250 ^{#5}	<3	<3	<3				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	1,3-dichlorobenzene	µg/L	1				<1	<1	<1				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1,4-dichlorobenzene	µg/L	1	300 ^{#3}		300 ^{#3}	<1	<1	<1				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1,2-dichlorobenzene	µg/L	1	10 ^{#14}	10 ^{#13}	10 ^{#14}	<1	<1	<1				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1,2,4-trichlorobenzene	µg/L	1	0.4 ^{#14}	0.4 ^{#13}	0.4 ^{#14}	<1	<1	<1				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1,2,3-trichlorobenzene	µg/L	3	7 ^{#5}		7 ^{#5}	<3	<3	<3				
Halogenated Hydrocarbons Dichtorofluoromethane µgL 1 75^{45} 200^{45} <22 <22 <22 <22 <22 <22 <22 <22 <22 <22 <22 <23 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 <33 >30 $>30^{44}$ $>200^{44}$ $>200^{44}$ $>200^{44}$ $>200^{44}$ $>200^{44}$ $>200^{44}$ $>200^{44}$ $>20^{44}$ $>20^{44}$ $>20^{44}$ $>20^{44}$ $>20^{44}$ $>20^{44}$ $>20^{44}$ $>20^{44}$ $>20^{44}$ <		Hexachlorobenzene	µg/L	1	0.03 ^{#14}	0.01 ^{#12}	0.03 ^{#14}	<1	<1	<1				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Halogenated Hydrocarbons	Dichlorodifluoromethane	µg/L	2	200^{#5}		200#5	<2	<2	<2				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Bromomethane	µg/L	1	7.5#5		7.5#5	<1	<1	<1				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Trichlorofluoromethane	µg/L	3	1,100 ^{#5}		1,100 ^{#5}	<3	<3	<3				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Liele war afterd Discussion	1,2-dibromoethane	µg/L	2	0.1 ^{#1}	#A	0.1"	<2	<2	<2				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Halogenated Phenois	2-chlorophenol	µg/L	1	200*14	50 ***	200#14	<1	<1	<1				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			µg/L	0.5	0.3 ^{**}	20"	0.3**	<0.5	<0.5	<0.5				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			µg/L	0.5	9 ²⁰		<u> </u>	<0.5	<0.0	<0.5				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Pentachlorophenol	ug/L	1	200 2 ^{#14}	0 4#12	200	<1	<1	<1				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Phthalates	Bis(2-ethylbexyl) obthalate	ug/L	5	2 8 ^{#14}	0.4 1 2 ^{#12}	2 8 ^{#14}	<5	<5	<5				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Butyl benzyl phthalate	ua/L	1	16 ^{#5}	20 ^{#7}	16 ^{#5}	<1	<1	<1				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Di-n-butyl phthalate	µg/L	1.5	2 ^{#14}	8 ^{#7}	2 ^{#14}	<1.5	<1.5	<1.5				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Di-n-octyl phthalate	µg/L	1	200 ^{#5}	20 ^{#7}	200 ^{#5}	<1	<1	<1				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Diethylphthalate	μg/L	1	15.000 ^{#5}	200 ^{#7}	15,000 ^{#5}	<1	<1	<1				
SolventsIsophorone $\mu g/L$ 0.5 $78^{#5}$ $78^{#5}$ $78^{#5}$ <0.5 <0.5 <0.5 MetalsArsenic (Filtered) $\mu g/L$ 0.9 $10^{#15}$ $25^{#12}$ $7.5^{#11}$ 475.1 $ 23.7$ Barlum (Filtered) $\mu g/L$ 1.8 $100^{#14}$ $100^{#13}$ $100^{#14}$ 34.7 $ 25.5$ Boron (Filtered) $\mu g/L$ 0.5 $25^{#5}$ $2.6^{#5}$ <0.5 $ <0.5$ Boron (Filtered) $\mu g/L$ 2 $1.000^{#15}$ $2.000^{#13}$ $750^{#11}$ 476 $ 168$ Cadmium (Filtered) $\mu g/L$ 0.2 $30^{#15}$ $0.08^{#12}$ $3.75^{#11}$ 1.71 $ 0.33$ Chromium (III+VI) (Filtered) $\mu g/L$ 0.2 $30^{#14}$ $3.4^{#12}$ $30^{#14}$ <0.2 $ <3$ Lead (Filtered) $\mu g/L$ 0.4 $10^{#15}$ $7.2^{#12}$ $18.75^{#11}$ 1 $ 3.1$ Mercury (Filtered) $\mu g/L$ 0.5 $1^{#15}$ $0.06^{#12}$ $0.75^{#11}$ <0.5 $ <0.5$ Nickel (Filtered) $\mu g/L$ 0.2 $20^{#15}$ $20^{#12}$ $15^{#11}$ 1 $ <1.2$ Varadium (Filtered) $\mu g/L$ 0.2 $20^{#15}$ $20^{#12}$ $0.75^{#11}$ <1.2 $ <1.2$ Varadium (Filtered) $\mu g/L$ 0.2 $20^{#15}$ $20^{#12}$ $15^{#12}$ $10^{#15}$ <1.2 $ <1.2$ Varadium (Dimethyl phthalate	µg/L	1		800 #7		<1	<1	<1				
MetalsArsenic (Filtered) $\mu g/L$ 0.9 10^{e15} $25^{#12}$ $7.5^{#11}$ 475.1 $ 23.7$ Barium (Filtered) $\mu g/L$ 1.8 $100^{#14}$ $100^{#13}$ 100^{614} 34.7 $ 25.5$ Beryllium (Filtered) $\mu g/L$ 0.5 $25^{#5}$ $25^{#5}$ 0.5 $ 0.5$ Boron (Filtered) $\mu g/L$ 2 $1.000^{#15}$ $2.000^{#13}$ $750^{#11}$ 476 $ 168$ Cadmium (Filtered) $\mu g/L$ 0.03 $5^{#15}$ $0.08^{#12}$ $3.75^{#11}$ 1.71 $ 0.33$ Chromium (III+VI) (Filtered) $\mu g/L$ 0.2 30^{e14} $3.4^{#12}$ 30^{e144} <0.2 $ 0.6$ Copper (Filtered) $\mu g/L$ 0.4 10^{e15} $7.2^{#12}$ $18.75^{#11}$ 1 $ 3.1$ Mercury (Filtered) $\mu g/L$ 0.5 $1^{#15}$ $0.05^{#12}$ $0.75^{#11}$ <0.5 $ <0.5$ Nickel (Filtered) $\mu g/L$ 0.5 $1^{#15}$ $20^{#12}$ $15^{#11}$ 0.4 $ 0.9$ Selenium (Filtered) $\mu g/L$ 0.6 $86^{#5}$ $20^{#7}$ $86^{#6}$ <0.6 $ 2.2$ Zinc (Filtered) $\mu g/L$ 1.5 $100^{#14}$ $8^{#12}$ $100^{#14}$ 45.1 $ 1.2$ Vanatium (Filtered) $\mu g/L$ 1.5 $100^{#14}$ $8^{#12}$ $100^{#14}$ 45.1 $ 2.2$ Chromium (Filtered) $\mu g/L$ <t< td=""><td>Solvents</td><td>Isophorone</td><td>µg/L</td><td>0.5</td><td>78^{#5}</td><td></td><td>78^{#5}</td><td><0.5</td><td><0.5</td><td><0.5</td></t<>	Solvents	Isophorone	µg/L	0.5	78 ^{#5}		78 ^{#5}	<0.5	<0.5	<0.5				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Metals	Arsenic (Filtered)	µg/L	0.9	10 ^{#15}	25 ^{#12}	7.5 ^{#11}	475.1	-	23.7				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Barium (Filtered)	µg/L	1.8	100 ^{#14}	100 ^{#13}	100 ^{#14}	34.7	-	25.5				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Beryllium (Filtered)	µg/L	0.5	25^{#5}		25 ^{#5}	<0.5	-	<0.5				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Boron (Filtered)	µg/L	2	1.000 ^{#15}	2.000 ^{#13}	750 ^{#11}	476	-	168				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Cadmium (Filtered)	µg/L	0.03	5 ^{#15}	0.08 ^{#12}	3.75 ^{#11}	1.71	-	0.33				
Copper (Filtered) $\mu g/L$ 3 2.000^{*13} 5^{*12} 1.500^{*11} <3 $ <3$ Lead (Filtered) $\mu g/L$ 0.4 $10^{#15}$ $7.2^{#12}$ $18.75^{#11}$ 1 $ 3.1$ Mercury (Filtered) $\mu g/L$ 0.5 $1^{#15}$ $0.05^{#12}$ $0.75^{#11}$ <0.5 $ <0.5$ Nickel (Filtered) $\mu g/L$ 0.2 $20^{#15}$ $20^{#12}$ $15^{#11}$ 0.4 $ 0.9$ Selenium (Filtered) $\mu g/L$ 1.2 $10^{#15}$ $10^{#15}$ <1.2 $ <1.2$ Vanadium (Filtered) $\mu g/L$ 1.5 $100^{#14}$ $8^{#12}$ $100^{#14}$ 45.1 $ 174$ Chromium (hexavalent) $\mu g/L$ 2 $37.5^{#11}$ $3.4^{#12}$ $37.5^{#11}$ <2 $ <2$ Chromium (Trivalent) (Filtered) $\mu g/L$ 2 $50^{#15}$ $4.7^{#12}$ $37.5^{#11}$ <2 $ <2$		Chromium (III+VI) (Filtered)	µg/L	0.2	30#14	$3.4^{\pm 12}$	30 ^{#14}	<0.2	-	0.6				
Lead (Filtered) $\mu g/L$ 0.4 10^{r10} 7.2^{r12} 18.75^{r11} 1 $ 3.1$ Mercury (Filtered) $\mu g/L$ 0.5 $1^{#15}$ $0.05^{#12}$ $0.75^{#11}$ <0.5 $ <0.5$ Nickel (Filtered) $\mu g/L$ 0.2 $20^{#15}$ $20^{#12}$ $15^{#11}$ 0.4 $ 0.9$ Selenium (Filtered) $\mu g/L$ 1.2 $10^{#15}$ $10^{#15}$ <1.2 $ <1.2$ Vanadium (Filtered) $\mu g/L$ 0.6 $86^{#5}$ $20^{#7}$ $86^{#5}$ <0.6 $ 2.2$ Zinc (Filtered) $\mu g/L$ 1.5 $100^{#14}$ $8^{#12}$ $100^{#14}$ 45.1 $ 174$ Chromium (hexavalent) $\mu g/L$ 2 $37.5^{#11}$ $3.4^{#12}$ $37.5^{#11}$ <2 $ <2$ Chromium (Trivalent) (Filtered) $\mu o/L$ 2 $50^{#15}$ $4.7^{#12}$ $37.5^{#11}$ <2 $ <2$			µg/L	3	2.000 ^{#15}	5 ^{#12}	1.500 ^{#11}	<3	-	<3				
Intercury (Filtered) $\mu g/L$ 0.5 $1^{*1.5}$ $0.05^{*1.2}$ $0.75^{*1.1}$ <0.5 $ <0.5$ Nickel (Filtered) $\mu g/L$ 0.2 $20^{#15}$ $20^{#12}$ $15^{#11}$ 0.4 $ 0.9$ Selenium (Filtered) $\mu g/L$ 1.2 $10^{#15}$ $10^{#15}$ <1.2 $ <1.2$ Vanadium (Filtered) $\mu g/L$ 0.6 $86^{#5}$ $20^{#7}$ $86^{#5}$ <0.6 $ 2.2$ Zinc (Filtered) $\mu g/L$ 1.5 $100^{#14}$ $8^{#12}$ $100^{#14}$ 45.1 $ 174$ Chromium (hexavalent) $\mu g/L$ 2 $37.5^{#11}$ $3.4^{#12}$ $37.5^{#11}$ <2 $ <2$ Chromium (Trivalent) (Filtered) $\mu a/L$ 2 $50^{#15}$ $4.7^{#12}$ $37.5^{#11}$ <2 $ <2$			µg/L	0.4	<u>10^{#15}</u>	7.2 ^{#12}	18.75***	1	-	3.1				
Note (Filtered) $\mu g/L$ 0.2 $20^{m/2}$ $15^{m/2}$ 0.4 $ 0.9$ Selenium (Filtered) $\mu g/L$ 1.2 $10^{\#15}$ $10^{\#15}$ <1.2 $ <1.2$ Vanadium (Filtered) $\mu g/L$ 0.6 $86^{\#5}$ $20^{\#7}$ $86^{\#5}$ <0.6 $ 2.2$ Zinc (Filtered) $\mu g/L$ 1.5 $100^{\#14}$ $8^{\#12}$ $100^{\#14}$ 45.1 $ 174$ Chromium (hexavalent) $\mu g/L$ 2 $37.5^{\#11}$ $3.4^{\#12}$ $37.5^{\#11}$ <2 $ <2$ Chromium (Trivalent) (Filtered) $\mu g/L$ 2 $50^{\#15}$ $A.7^{\#12}$ $37.5^{\#11}$ <2 $ <2$		Nickol (Filtorod)	µg/L	0.5	1 ^{#15}	0.05^{+12}	0.75"''	<0.5	-	<0.0				
Selentian (Filtered) $\mu g/L$ 1.2 10^{-12} 10^{-12} <1.2 $<<<1.2<<1.2<<1.2<<<1.2<<<1.2<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<$	<1.2 $<<1.2<<1.2<<<1.2<<<1.2<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<$	<1.2 $<<1.2<<<1.2<<<1.2<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<$	<1.2 $<<<1.2<<<1.2<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<$	$<$ <1.2 $<$ $<$ <1.2 $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ </math		Selenium (Filtered)	µg/L	0.2	20 ^{#15}	20***	15 ^{"''}	0.4	-	0.9
Variation (intered) $\mu g/L$ 0.0 86^{-2} 20^{-1} 86^{-2} <0.0 $ 2.2$ Zinc (Filtered) $\mu g/L$ 1.5 $100^{#14}$ $8^{#12}$ $100^{#14}$ 45.1 $ 174$ Chromium (hexavalent) $\mu g/L$ 2 $37.5^{#11}$ $3.4^{#12}$ $37.5^{#11}$ <2 $ <2$ Chromium (Trivalent) (Filtered) $\mu g/L$ 2 $50^{#15}$ $A 7^{#12}$ $37.5^{#11}$ <2 $ <2$		Vanadium (Filtered)	µg/∟	1.2	<u>10″ '`</u>	c c ^{#7}	10 ^{""}	<1.2	-	<1.2 0.0				
$\frac{1}{100} + \frac{1}{100} + \frac{1}$			μy/L	0.0	<u>86</u> "° 400#14	20"' 0 ^{#12}	<u>86</u> 400 ^{#14}	۲U.U م25 1	-	۲.۲ 17۸				
Chromium (novariation) Ipg/E 2 37.5 37.5 \sim \sim \sim Chromium (Trivalent) (Filtered) ug/L 2 50 ^{#15} \wedge 7 ^{#12} 37.5 ^{#11} <2		Chromium (hexavalent)	μy/L uα/l	2	100 ^{°°°} 27 5 ^{#11}	δ 2 4 ^{#12}	<u>100</u> 27 <i>c</i> #11	-7 -2		-2				
		Chromium (Trivalent) (Filtered)	ua/L	2	57.5 50 ^{#15}	3.4 ⊿ 7 ^{#12}	37.3 37 5 ^{#11}	<2	-	<2				

Comments

#1 WS Regs 2010 (Eng/Wal)#2 WHO Petroleum In DW 2008 #3 WHO DWG 2011 #4 WFD EQS 2010 Fresh (Eng/Wal) #5 USEPA RSL (tapwater) #7 SEPA WAT-SG-53 Fresh EQS - AA - 2013 #9 PNEC (EU REACH) - Freshwater #11 Ireland GTVs 2010 #12 Ireland Freshwater EQS (AA) #13 IGV Ireland 2003 (EQS) #14 IGV Ireland 2003 #15 DWS Ireland 2007 #17 Calc WHO #18 ESDAT Combined. Some analytes are reported multiple times; the lowest non-detect or the highest detect is used. Some Analytes are missing from this Combined Compound. #19 ESDAT Combined. Some Analytes are missing from this Combined Compound. #20 ESDAT Combined. GAC: Generic Assessment Criteria (blank): No assessment criteria available - : Not analysed KEY GAC_WTV_IE_GTV Exceedance of CW/WE Water. GTV - Ireland GAC_WTV_IE_DWS Exceedance of CW/WE Water. DWS - Ireland GAC_WTV_IE_EQS-Fresh Exceedance of CW/WE Water. Aquatic Toxicity - Ireland - Freshwater

Table 5 Groundwater Field Readings City Block 2

Location_Code	BH10	BH11	BH12	BH13	BH14	BH9
Sampled_Date_Time	12/08/2015	12/08/2015	11/08/2015	12/08/2015	12/08/2015	11/08/2015
Location_Type	Borehole	Borehole	Borehole	Borehole	Borehole	Borehole
Monitoring_Zone	City Block 2	City Block 2	City Block 2	City Block 2	City Block 2	City Block 2
Monitoring_Unit	Made Ground	Made Ground	Gravel	Made Ground	Gravel	Gravel
SampleComments	Turbid initially, runs clear,	Clear, NEC.	Slightly moderate	Clear, NEC.	Clear, NEC.	Clear, NEC.
	NEC.		turbidity, NEC.	1 1	1	

Chem_Group	ChemName	output unit						
Field	Purge Time	S	840	378	-	420	375	1200
	Purge Volume	L	-	6	-	6	5	1.3
	Purge Rate	L/s	-	0.02	-	0.01	0.01	0
	рН	pH_Units	6.39	6.72	6.92	6.96	6.57	6.83
	Electrical Conductivity	μS/cm	2364	2410	3175	2880	4118	2041
	Temperature	oC	14.6	13.7	16.6	13.9	13.5	17.4
	Dissolved Oxygen (Filtered)	mg/L	0.64	0.62	6.03	2.18	0.71	0.86
	Field Redox	mV	-37.4	59	-9.3	64.7	75.4	-55.4
	Redox	mV	174.53	271.58	201.18	277.14	288.13	154.5

Appendix A – Trial Pit Logs

UR	AE 4tr Ad Ge Du Co Ph	ECOM I Floor Ielphi F eorge's In Laog Dubli Ione 01	Infrastro Plaza Street ghaire in 1 23831	Upp	re & Environ er	ment	TRIA	L PIT]	LOG						
Project Nam	e and Site	e Locati	ion				Client						TRIAL PIT No		
	Spenc	er Do	ck Blo	ock 2	2&7				Hin	es Ireland			ТР	201	
Job No	• • • •	D St	Date tart Date	29-(05-15	Grour	nd Level (n	n)	Co-Ord	inates ()				201	
47092	2981	Eı	nd Date	29-(05-15	Math	2.79	Uaad	E 3	17,505.89	N 234,62	25.39	Shoot		
IGS	т					Meth	ICP 3						Sheet 1	of 1	
105			$\widehat{}$				JCB J			. .			1	01 1	
Depth BGL	Sample Det	e / Test tails	ID (ppn	Water	Legend (Th	pth lick-		DES	CRIPTI	A ON			COMMENTS	S	strument Backfill
			Н		nes	s)	HARDCO	RE. MADE	GROU	ND					<u> </u>
- 0.5 	TP203	1_0.3-1.3	, 7.5			15)	Dark brow MADEGR	n black san OUND	dy grav	elly CLAY.					
- 1.5 	TP20	1_1.3-2.7	, 3.4			40)	Dark brow MADEGR	n clayey sli OUND	ghtly sa	ndy GRAVE	L of clinker		Red iron chip	pings	
- 2.5 	TP201	1_2.7-3.8	3			2.70	Soft dark t	prown grey	sandy S	ILT.					
	TP20	1_3.8-4.5	5			3.80 70) 4.50	Dark brow	n grey sand	y GRA	VEL.					
Back	cfill		1		Sample I	Detail	s	Les	gend				GENI	ERAI	
					Small Dist	turbed Si	ample	Made Ground Sandy GRAV	L (Fill)	Sandy S	SILT/CLAY		REM NEC - No Evi Contaminaitor EOH - End of	ARKS idence of n Trial He	f
							Ţ	Groundwater	Table y	⊈ ^{Ground} T. Kilbrid	water Strike	Аррі	roved By B.	Duggai	 n
5															

	Pho	one 01	2383	100			IK		LUG	ſ			
Project Name	e and Site	Locatio	n 				Clie	ent				TRIAL PIT	No
	Spence	er Doc	k Blo	ock 2	2 & 7				Hin	es Ireland		TP202	
Job No		Da Star	te rt Date	29-0)5-15	Gro	ound Leve	el (m)	Co-Ord	inates ()		11 202	
47092	2981	Enc	l Date	29-0)5-15		2.5	54	E 3	17,528.19 N 234	,631.48		
Contractor						Me	thod / Pla	int Used				Sheet	
IGSI	_						JCE	33CX				1 of 1	
	Samula	/ Test	mdc	er		D 4			STRAT	ĨA			1 =
Depth BGL	Deta	ails	PID (J	Wat	Legend (Depth Thick- ness)		DE	SCRIPTI	ON		COMMENTS	Instrumer /Backfill
-						0.15	CONC	RETE. MAE	DEGROUI	ND			
- - - 0.5	TP202	_0.2-1.2	1.8			(0.50)	Black s MADE	andy gravell GROUND	y CLAY v	with occasional cobble	S.	Occasional bricks	-
- - - 1.0						(0.55)	Light b	rown clayey	sandy GR	AVEL. MADEGROU	ND	1.0m frequent red iron chips white yellow clicker and pockets of brown sand.	-
- - - 1.5 -	TP202	_1.2-1.9	5.9	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		(1.00)	Light b	rown sandy ;	gravelly C	'LAY. MADEGROUN	ID	Frequent bricks	-
- 2.0 	TP202_2.2-3.4 5.6					2.20	Dark re	ed GRAVEL				Frequent man-made objects	_
- - - 3.0 -	TP202	12.2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		(0.90) 3.10 (0.30) 3.40	Dark g	rey silty slig	ntly gravel	ly SAND. MADEGR(DUND	Very dense slow progress	-	
3.5 	TP202_3.4-3.8 12.2					(0.40) 3.80	EOH. F	Pit terminated	d due to in	stability.			-
Back	fill				Sampl	e Deta	ails	L	egend			GENERAL	_
					Small	Disturbed	I Sample	Made Grou	und (Fill)	Sandy GRAVEL		REMARKS NEC - No Evidence o Contaminaiton EOH - End of Trial H	ole
								Groundwat	er Table	$\frac{1}{2}$ Groundwater Strike	,		
								Logged	By	T. Kilbride	Appro	oved By B.Dugga	n

UR	Al 4t Ad G D C C	ECOM I ch Floor delphi P eorge's un Laog o. Dubli hone 01	nfrastr Plaza Street phaire n 2383	Upp 100	re & Enviror er	nment	TRIA	L PIT	LOG	r				
Project Name	e and Sit	e Locati	on				Client			.			TRIAL PI	Г No
	Spend	cer Doo	ck Blo	ock 2	2&7	~			Hin	es Ireland	1		TP20	3
Job No	2001	Da Sta	ate art Date	29-	05-15	Groun	id Level (n	n)	Co-Ord	inates ()	N 2246	24 42		•
Contractor	2981	En	id Date	29-	03-13	Metho	2.20 od / Plant I	Used	ЕJ	17,346.35	/ IN 254,0	34.42	Sheet	
IGSI	Ĺ						JCB 3	CX					1 of 1	
			(mi					<u> </u>	STRAT	ĨA.			'	
Depth BGL	Samp De	le / Test etails	PID (pp	Wate	Legend (TI nes	epth hick- ss)		DES	SCRIPTI	ON			COMMENTS	Instrument /Backfill
-						0.15	CONCRE	TE. MADI	EGROUI	ND				
- 0.5 0.5 	TP20	03_0.2-1.4	6.4			.25)	Black becc MADEGR	oming brow OUND	wn sandy	gravelly C	LAY.		Frequent fragments of brick and debris. 1.1m red metallic clinker	
- 1.5 1.5 	TP203_1.4-2.9 5.7				1.40 1 .30)	Loose grey nany cobb	/ brown cla	ayey slig EGROU	htly sandy C ND	GRAVEL wit	h	Frequent clinker bricks and building rubble		
-						2.70		011 77 . 14	11		ECROLAID			
- 3.0						.50) 3.20	Dark grey	SILT with	gravel le	enses. MAD	ÞEGKOUND			
- 3.5				Ţ	(0	1.70)	Loose grey many cobb	v brown cla bles. MAD	ayey slig EGROU	htly sandy (ND	GRAVEL wit	h	Frequent clinker bricks and building rubble	
-	TP20	03_3.9-4.1	0.5			3.90 I	Dark grev	slightly sil	ty fine S.	AND.				
- 4.0	Å				× × Ť	4.10	EOU		-					
							EOH							
Back	fill				Sample	Detail	S	Le	egend				GENERA	L
					Small Dis	sturbed Sa	ample	Made Grour	nd (Fill) r Table	Silty/	Clayey SAND		REMARK NEC - No Evidence Contaminaiton EOH - End of Trial	CS e of Hole
								1		=				
								Logged I	Ву	T. Kilbr	ide	Appr	oved By B.Dugg	gan

UR	S	4th Floor Adelphi Pl George's S Dun Laogl Co. Dublir	laza Street haire	t Upp	er		тріа	і ріті						
Project Nam	e and S	Phone 01 Site Locatio	2383	100			Client		<u></u>	og In-1- 1			TRIAL PIT	' No
L-L N-	Spe	ncer Doc		ock .	2&/	C			Hine	es Ireland				4
JOD NO 4700	2021	Da Sta	rt Date	04-	06-15	Grou	nd Level (1 2.40	m) (_0-Orai	$\frac{1754222}{1754222}$	N 224 66	\$2.25	_	
4709. Contractor	2981	Enc	d Date	04-	03-13	Meth	Z.49	Used	E 31	17,343.23	IN 254,00	5.55	Sheet	
IGS	r					wicu	ICR 3	CX						
105				1			3CD 3	07					1 01 1	
Depth BGL	San	nple / Test Details	ID (ppr	Water	Legend (T	epth hick-		DESC		A DN			COMMENTS	strument
			Р		ne	ss)	CONCRE	TE MADEO	ROUN	JD				Ins
		P204_0.2-1.7	4.3			1.50)	Black silty	y sandy grave	ikooli iliy CL4	AY. MADEG	ROUND		Frequent fragments of brick and builders rubble	
	TI	P204_1.7-3.3	0			1.60)	Soft black	SILT with b	enses of	f fine sand.				
- 3.5	TH	P204_3.3-4.0	0	Ţ		3.30	Grey sand	y GRAVEL.	Gravel	is fine to coar	rse.			_
- 4.0	H				0.0.0	4.00	EOH							-
Back	fill				Sample	Detai	ls	Leg	end				GENERA	Ĺ
					Small Di	sturbed S	Sample	Made Ground Sandy GRAVE	(Fill) ∃L	Sandy S	ILT/CLAY		REMARK NEC - No Evidence Contaminaiton EOH - End of Trial	S of Hole
							₹	Groundwater T	able	Groundw	ater Strike			
								Logged By	7	T. Kilbride	e	Appro	oved By B.Dugg	an.
		1												

AECOM Infrastructure & Environment

UR	AE 4th Ade Ge Dui Co. Pho	COM Ir Floor elphi Pl orge's S n Laogl Dublir one 01	nfrasti laza Street haire 1 2383	ructu t Upp 100	re & Environ ber	nment	TRL	AL PIT	LOG	ł				
Project Nam	e and Site	Locatio	on				Clien	ıt					TRIAL PIT	No
	Spence	er Doc	k Blo	ock	2 & 7	1			Hin	es Ireland			TP20#	;
Job No	••••	Da Sta	ite rt Date	27-	05-15	Grou	nd Level	(m)	Co-Ord	inates ()			11 200	,
47/092	2981	Enc	l Date	27-	05-15	Math	2.76	5 t Used	E 3	17,501.69	N 234,664	1.90	Shoot	
IGS	T					Meth		3CX						
105			(r				365		STD AT	۲۸			1 01 1	
Depth BGL	Sample Deta	e / Test ails	oID (ppn	Water	Legend (T	epth hick-		DE	SCRIPTI	ON			COMMENTS	Strument
- 0.5 	TP205_	_0.35-1.4	0.5			0.35) 0.35 0.35	Gravel H MADEC Loose bl MADEC	IARDCORF ROUND ack beomin, ROUND	E over CC	ONCRETE.	dy GRAVE	L.	Frequent fragments of bitumen timber and brick. 0.65m bitumen odour. 1.4m clinker. 2.1m purple red burnt ash cobble.	<u> </u>
- 2.5	TP205	_2.1-3.0	0.7	Ţ		3.00	Dark brc	own very silt beoming sar	ty SAND Idy SILT.	with occasiona	ıl gravels an	ıd		
- 3.5	TP205	_4.0-4.3	0.4			4.00 (0.30) (4.30)	Grey san EOH	dy fine ang	ular GRA	VEL.				_
Back	fill				Sample	Detail	ls	Le	egend				GENERAI	
					Small Di	sturbed S	ample	Made Grou	nd (Fill) VEL	Silty/Clay	rey SAND		REMARKS NEC - No Evidence Contaminaiton EOH - End of Trial I	S of Hole
				_				<u>-</u>		<u> </u>				
								Logged	By	T. Kilbride		Appro	wed By B.Dugg	an

URS	AECO 4th Flo Adelph Georg Dun La Co. Du Phone	M Infrast oor hi Plaza e's Stree aoghaire iblin 01 2383	t Upp	re & Envi er	ronment	TRIAL PI	Г LOG			
Project Name	and Site Loc	ation				Client			TRIAL PIT	No
	Spencer I	Oock Bl	ock 2	2&7			Hines Ireland		TRACA	
Job No		Date	201	05 15	Grou	ind Level (m)	Co-Ordinates ()		- IP206	
47092	981	Start Date End Date	28-0	05-15 05-15		2.10	E 317,560.44	N 234,709.60		
Contractor					Met	hod / Plant Used			Sheet	
IGSL	or iSL					JCB 3CX			1 of 1	
		(md	r				STRATA			
Depth BGL	Sample / T Details	est d]	Wate	Legend	Depth (Thick-	D	ESCRIPTION		COMMENTS	ument

D	epth BGL	Sam	ple / Test Details	PID (pp	Wate	Legend	Depth (Thick- ness)			DESCRIPTI	ON		COMMENTS	nstrument /Backfill
							- 0.15	CON	CRET	TE. MADEGROU	ND			-
-							0.15	Grave	el HA	RDCORE. MADE	EGROUND			-
- 0.: 	5	ТР	206_0.3-1.0	0.0				Loose	e dark	brown sandy GR	AVEL. MADEGROUNE)	Frequent fragments of concrete and ceramic. 0.4m. 1.1m red metallic clicker and angular magnetic cobbles. 1.5m grey white clicker with timber	_
- 1.) - -	0	TP	206_1.0-2.5	0.0			_(1.45)							
- 1.: -	5						1.70	Creek		- L L-OUT M			Denne	
┢							1.80	Grey	mottle SILT	MADEGROUNT	ADEGROUND		Damp	-
- - 2.1 -	0						-	Dark	red sl e red o	lightly sandy GRA clicker.	VEL with many cobbles	of	Occasional bricks	
- 2.: -	5	TP	206_2.5-3.5	0.0	Ţ		(0.90)							
	0	X					2.80 (0.30) 3.10	Dark	grey s	silty fine SAND.				
5.GPJ AGS3_A		\mathbb{N}					- (0.40)	Dark	grey s	sandy fine GRAVI	EL.			
0CK 20 - 3.: - 0CK	5					<u>r (/. 0. (/</u>	-	EOH.	Pit te	erminated due to ir	nstability			
	Back	fill				Samp	le Det	ails		Legend			GENERAL	
TRIAL PIT LOG SPE						Sma	ll Disturbe	d Sample		Made Ground (Fill) Sandy GRAVEL	Silty/Clayey SAND		REMARKS NEC - No Evidence of Contaminaiton EOH - End of Trial H	of Iole
									Ţ	Groundwater Table	Groundwater Strike			
JRS IRE										Logged By	T. Kilbride	Appi	roved By B.Dugga	n

AECOM Infrastructure & Environment 4th Floor Adelphi Plaza George's Street Upper Dun Laoghaire Co. Dublin Phone 01 2383100 TRIAL PIT LOG

Project Name	and S	ite Locat	tion				Clie	ent				TRIAL DIT	No
1 Toject I valik	Sper	ncer Do	ock Blo	ock 2	2&7		City	ciit	Hir	nes Ireland		I KIAL FII	110
Job No	1	Ι	Date	20	05.15	Grou	und Leve	el (m)	Co-Orc	linates ()		- TP207	,
47092	2981	S I	Start Date End Date	28-0	05-15 05-15		2.:	54	Е 3	817,541.80 N 234,7	719.82		
Contractor						Met	hod / Pla	ant Used				Sheet	
IGSI							JCI	B 3CX				1 of 1	
			(mi	L					STRAT	ГА			
Depth BGL	Sam E	ple / Tes Details	st Id) (IId	Wate	Legend (Depth Thick- ness)			DESCRIPTI	ION		COMMENTS	Instrument /Backfill
-						0.15	CONC	CRETE. N	IADEGROU	ND			
-	TP2	207_0.2-1.3	35				Dark b	prown san	dy gravelly C	CLAY. MADEGROUNE)	Fragemnts of brick and debris	
0.5 	W					(0.70)							
- 1.0 						(0.40)	Light b cobble	orown sar s. MADE	ndy gravelly C EGROUND	CLAY with occasional			_
-	V V					1.25	Dork b	rown SII	T MADECE				-
- 1.5 -	TP2	207_1.35-2	3			1.55	Dark b	prown gra	velly SAND	with many cobbles of br	ick.	Dry	
2.0						(0.95)							
-	TP.	207_2.3-3.	6			2.30	Grey b	lack silty	SAND with	lenses of very soft grey b	olack	Strong estuarine	_
-2.5					× × - × × -		motio	u oil i .				ouou	
- - 3.0 -					× × - × × -	(1.30)							
- - - - - - - - - - - - - - - - - - -				Ţ	× × [× × [3.60	Dark	maxy his al	and an an avail				
						(0.70)	Dark g	реу бласк	. sandy angun	al GRAVEL.			
	TP.	207_4.0-4.	3			4.30							
					-		EOH						
Back	fill				Sampl	e Deta	ils		Legend			GENERAL	1
					Small	Disturbed	Sample	Made	Ground (Fill) y GRAVEL	Silty/Clayey SAND		REMARKS	of
										1		EOH - ENG OF ITTALE	1010
								Groun	idwater Table	Groundwater Strike		avad Dry	
								Log	ged By	T. Kilbride	Appr	oved By B.Dugga	an

UR	AE 4th Ad Ge Du Co Ph	COM In Floor lelphi Pl orge's in Laog D. Dublir ione 01	nfrasti laza Street haire 1 2383	ructu t Upp 100	re & Enviroi ber	nment	TRI	AL PI	ГLOG	Y T					
Project Name	and Site	Locatio	on				Clie	ent					TRI	AL PIT	No
	Spence	er Doc	k Blo	ock 2	2&7	~			Hır	hes Ireland			_	P208	
Job No	0.001	Da Sta	ate rt Date	29-	05-15	Grou	nd Leve	el (m)	Co-Ord	linates () $17.520.2($	1 224 714	25	-		
47092 Contractor	.981	Enc	d Date	29-	05-15	Meth	Z. J	/ / ant Used	E 3	017,520.26	N 234,/10	0.30	Sheet		
IGSI						wiedi	ICF	B 3CX					Sheet	1 of 1	
1001			(u						STRAT	ΓΔ				1 01 1	_
Depth BGL	Sample Det	e / Test tails	PID (ppr	Water	Legend D (T	epth hick- ss)		D	ESCRIPT	ION			COMMEN	NTS	nstrument
-0.5 	$5 \\ 0 \\ 5 \\ 0 \\ 5 \\ 0 \\ 5 \\ 0 \\ 5 \\ 0 \\ 0$.70) <u>1.80</u>	CONC Brown concret	RETE. MA black sand e. MADEG MADEG	DEGROU y gravelly (ROUND	ND CLAY with mar	ny cobbles c	of	Frequent pr metal. 1.0n frequent w and red flee concrete bo	ieces of n hite grey cks. 1.4m bulder.	
-2.5	D TP208_1.8-2.7 2.8 TP208_2.8-3.7 D TP208_2.8-3.7 D TP208_2.8-3.7 TP208_2					.90)	Stiff da	rk grey bla	ck sandy S	ILT.					_
- 3.5 	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					<u>3.70</u> .60) <u>4.30</u>	Dark gr EOH	rey black sa	ndy fine C	BRAVEL.					_
Backt	fill			-	Sample	Detai	ls]	Legend				GE	NERAI	
	Small D						Sample	ि Made Gr	ound (Fill) RAVEL	🗵 Sandy Sl	LT/CLAY		REI NEC - No Contamina EOH - End	MARKS Evidence of iton I of Trial H	of Iole
								Groundwa	ater Table	⊥ Groundwa	iter Strike				
								Logge	d By	T. Kilbride		Appro	oved By	B.Dugga	ın

UR	5	AECOM I 4th Floor Adelphi P George's Dun Laog Co. Dublin Phone 01	nfrasti Iaza Street haire n 2383	ructu t Upp 100	re & Enviro per	onmen	TRIAL PI	ſ LOG			
Project Name	e and	Site Locatio	on				Client			TRIAL PIT	No
	Sp	encer Doc	ck Bl	ock 2	2&7	_		Hines Ireland		TD200	a
Job No		Da	ate art Date	04-	06-15	Gro	und Level (m)	Co-Ordinates ()		11 203	
47092	2981	En	d Date	04-	05-15		2.65	E 317,515.90	N 234,749.94		
Contractor						Me	thod / Plant Used			Sheet	
IGSI	_/						JCB 3CX			1 of 1	
) m	L.				STRATA			
Depth BGL	Sa	mple / Test Details	PID (pj	Wate	Legend (1	Depth Thick- ess)	D	ESCRIPTION		COMMENTS	nstrument /Backfill
						(0.30)	CONCRETE. MAI	DEGROUND			
	\square	TP209_0.3-2.0				0.30	Black sandy gravel		ND	Brick fragments	_
0.5		_					Diack Sandy gravel	IY SILT. WADLOROU		BIER HEEHEIRS	
0.5						0.60)					
	M					0.90	Dark brown rad ba	coming white red alayo	u aliabtly condy	Poakets of white	_
1.0							GRAVEL of clinke	r. MADEGROUND	y slightly salidy	blue ash	
1.5											
	I/ II										
						1.80)					
2.0	\square										
2.5											
						2.70					
		1P209_2.7-4.0					Soft black SILT.				
2.0	$\ $										
5.0											
						(1.00)					
3.5											
						3.70	~ .				
					000		Grey sandy GRAV	EL.			
40	Ц.	FD200 4 0 4 7			0000						
1.0	Λ^{2}	1P209_4.0-4.5			0004	0.80)					
	X				000						
	/				0.00	4.50					
-4.5	H				<u></u>	4.50	ЕОН				-
	1 I		1	1	1 F					1	1

ŏ	-	-					
ENCER	Backfill	Sample Det	ails	Legend			GENERAL
Ъ		Small Disturbe	d Sample	Made Ground (Fill)	SILT/CLAY		KEWAKKS
D TRIAL PIT LOG				Sandy GRAVEL			NEC - No Evidence of Contaminaiton EOH - End of Trial Hole
LAND LIMITED				Groundwater Table	$\underbrace{\bigvee}_{=}^{1}$ Groundwater Strike		
URS IRE				Logged By	T. Kilbride	Аррі	roved By B.Duggan

UR	S C P	Adelphi Pl Adelphi Pl George's S Dun Laogl Co. Dublir Phone 01	laza Streel haire 1 2383	: Upp 100	ber	T	RIA	L PIT LOO	G			
Project Nam	e and Si Spen	te Locatio cer Doc	on k Blo	ock	2 & 7	(Client	Hi	nes Ireland		TRIAL PIT	No
Job No 47092	2981	Da Star Enc	ite rt Date 1 Date	29- 29-	05-15 05-15	Ground Le	evel (n 2.65	n) Co-Or E	rdinates () 317,515.90 N 234,7	49.94	17210	
Contractor IGS	Ĺ					Method /	Plant I CB 30	Used CX			Sheet 1 of 1	
		1 (7)	(mq	er				STRA	ТА			
Depth BGL	Samp D	etails	PID (p	Wat	Legend (Th nes	pth iick- s)		DESCRIPT	TION		COMMENTS	
- 0.5	TP2	210_0.4-1.8	0.2			65)	e dark	brown black SA	ND. MADEGROUND			
2.0	TP2	210_1.8-2.3	1.7			1.80 Stiff 50) 2.30	grey s	ilty slightly grave	elly CLAY. MADEGROU	JND	1.9m red orange angular iron chippings	-
· 2.5		10_2.3-3.3		Ţ		30) 2.60 90)	dark <u>s</u> e dark	grey black clayey	sandy SILT.		Strong estuarine odour	-
3.5	TP2	210_3.5-4.2				3.50 Grey 70) 4.20	' brow	n gravelly SAND				-
· 4.5	TP2	210_4.2-4.5			(0.	30) 4.50 EOH	dark g	grey CLAY.				
Back	fill				Sample I	Details		Legend			GENERAL	<u> </u>
					Small Dis	turbed Sample		Made Ground (Fill) Gravelly SAND	Sandy SILT/CLAY		REMARKS NEC - No Evidence of Contaminaiton EOH - End of Trial H	of [0]
							Ţ	Groundwater Table	$\frac{1}{2}$ Groundwater Strike			
								Logged By	T. Kilbride	Appi	roved By B.Dugga	n

AECOM Infrastructure & Environment

UR	AE 4th Ad Ge Du Co Ph	COM li Floor elphi P orge's n Laog Dublir one 01	nfrastr laza Street haire า 2383 ⁻	ructu : Upp 100	re & Enviror er	nment	TRIA	L PIT	LOG	I T				
Project Nam	e and Site	Locatio	on				Client						TRIAL PIT	No
	Spence	er Doc	k Blo	ock 2	2 & 7	1			Hin	es Ireland			TD214	
Job No		Da Sta	ate rt Date	29-	05-15	Grour	nd Level (r	n)	Co-Ord	inates ()		10 50	11 21	
47/092	2981	Ene	d Date	29-	05-15	Math	2.16	Ucad	E 3	17,562.15	N 234,74	42.73	Sheet	
IGS	Ĺ					wieun	JCB 3	CX					1 of 1	
100			n)				1020		STRAT	`Δ				
Depth BGL	Sample Det	e / Test ails	PID (pp1	Water	Legend (TI	epth nick- ss)		DES	SCRIPTI	ON			COMMENTS	nstrument /Rackfill
-						0.15	CONCRE	TE. MADI	EGROUI	ND				
- 0.5 	TP211	0.3-1.8	209			.65)	Black sand	ly gravelly	CLAY.	MADEGRO	UND		Frequent fragments of brick waste and ceramic. 1.5m becomes dark red with metallic clinker.	
- 2.0 	TP211	1.8-3.0	24.4	1		.20)	Dark grey	black mot	tled sligh	tly sandy SII	Л.		Slight estuarine odour	
- 3.0 	TP211	_3.0-4.0	8.8	Ŷ		.00)	Grey sand	y fine GRA	AVEL.					
- 4.0 	TP211	4.0-4.5	2.7			.50)	Dark grey and pocke EOH	slightly sa ts of grave	ndy SIL7 l.	Γ with many s	shell fragme	ents		
Back	 fill		1		Sample	Detail	s	I e	egend				GENERAL	
Dack					Small Die	sturbed S	ample	Made Grour Sandy GRA	nd (Fill) VEL	Sandy Sandy gravel	SILT/CLAY SILT/CLAY wi	th	NEC - No Evidence Contaminaiton EOH - End of Trial	S of Hole
								Logged I	Зу	T. Kilbrid	le	Appi	roved By B.Dugg	an

Appendix B – Borehole Logs

REPORT NUMBER

		CT Sp NATES		ck , Dublin	RIG T BORE	YPE EHOLE		ER (m	ım)	Dando 20 200	00	BOREH SHEET DATE C		D. BH Shi NCED 09/	109 eet 1 of 2 07/2015	
CLI	ENT	Sp	encer Do	ck Developme	nt Co. SPT H		R REF. N	NO.		10.50		BORED	BY	J.C)'Toole	
ENC	GINEE	२ 00	SC		ENER	RGY RA	TIO (%)				Sam	PROCE	SSED E	3Y F.C	;	
Depth (m)			D	escription			Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recoverv	Field Res	Test ults	Standpipe Details
- 0	MAD	E GROU	ND (Com	prised of brick	stone,rubble fill) elly silty/clayey fill)				0.90	 AA35325	В	1.00		(0, 0, 7	= 7 1, 2, 2, 2)	
- 2									2 90	AA35326	В	2.00		N (0, 0, 0	= 3 0, 1, 1, 1)	
- 3	Soft	o firm gre	ey SILT				×××× × × × × × × × × ×		2.00	AA35327	В	3.00		N (1, 1, [.]	= 6 1, 1, 2, 2)	
- 4						× × × × × ×				AA35328	В	4.00		N (1, 1, 2	= 9 2, 2, 2, 3)	
- 5	Medi	um dense	e grey silty	gravelly SAN	D	× × ×	× × × × ×		5.30 5.50	AA35329	В	5.00		N (1, 2, 2	= 12 2, 3, 3, 4)	
6	Medi GRA	um dense VEL with	e to dense cobbles	grey fine to co	barse sandy	0.00.00				AA35330	В	6.00		N (2, 3, 4	= 24 4, 6, 7, 7)	0 0 0 0 0 0
- 7						00 00 00 00	- 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0		7.80	AA35331	В	7.00		(4, 7, 9,	= 40 9, 10, 12)	
- 8	Very cobb	stiff to ha les and or	rd black s ccasional	andy gravelly boulders	CLAY with					AA35332	В	8.00		N (3, 4, 7	= 35 (, 9, 9, 10)	
9										AA35333	В	9.00		N = 44 (8, 14, 7	/225 mm 16, 12, 16)	
HA		RATA B	ORING/C	HISELLING								· 	V	VATER ST	RIKE DE	TAILS
Fror	m (m)	To (m)	i ime (h)	Comments			vvater Strike	_ Ca _ De	sing pth	Sealed At	Rise	e (i ime min)	Comments	;	
7 9	7.9 9.6	8.2 10.2	0.5 1				4.80	4.	80	No	4.50	0	20	Seepage		
<u> </u>									Hole	Caeing	De	oth to	G	ROUNDWA	TER PR	OGRESS
INS	Date -07-15	Tip De 7.00	ETAILS pth RZ T 5.00	op RZ Base) 7.00	Type 50mm SP		Date 09-07-15		<u>Depth</u> 5.50	Depth 5.50	Ue W	Ater 1.00	Comm End of 1	ents st Day		
REI	MARK	S CAT so	canned lo	cation . Hand o	dug inspection pit	t			D - Smal B - Bulk LB - Larg	DIE Legence I Disturbed (tub) Disturbed ge Bulk Disturbed vironmental Sam	 	/ial + Tub)	UT San P - I W -	- Undisturbed 100n nple Undisturbed Piston Water Samole	nm Diameter Sample	

REPORT NUMBER

1	8489
---	------

	\bigcirc														
со	NTRA	CT Sp	encer Docl	k , Dublin		_					BOREHO SHEET		D.	BH09 Sheet 2 of 2	
CO GR		NATES	m AOD)		RIG TYP BOREHO BOREHO	E DLE DIAME DLE DEPTI	ETER (n H (m)	1 m) 2	Dando 20 200 10.50	00	DATE C	OMME OMPLI	NCED	09/07/2015 10/07/2015	
CL EN	IENT GINEEI	Sp R 00	encer Dock SC	C Development Co	D. SPT HAN ENERGY	MMER REF (RATIO (%	F. NO.				BORED	BY SSED E	BY	J.O'Toole F.C	
										San	nples				
Depth (m)			De	scription		Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recoverv	F	ield Test Results	Standpipe Details
- 10	Very cobb	stiff to ha	rd black sa ccasional b	andy gravelly CLA oulders <i>(continue</i>	Y with d)			10.50	AA35334	В	10.00			(14, 25)	
Ē	End	of Boreho	le at 10.50	m											
- 11															
-															
13															
14															
- 15															
- - - - 16															
17															
- 18															
H		RATA B	ORING/CH	ISELLING			-				 	. V	VATER	STRIKE DET	AILS
Fro	m (m)	To (m)	Time (h)	Comments		Wate Strike	r Ca <u>D</u> e	sing 3 epth	Sealed At	Ris To	e T (n	ıme nin)	Comm	ents	
	7.9 9.6	8.2 10.2	0.5 1												
									Cooler			G	ROUND	WATER PRO	GRESS
มี เกร	STALL/		TAILS			Date	e	Depth	Depth	De	ptn to ater	Comm	ents		
20 20 20 20 20	Date 0-07-15	Tip De 7.00	pth RZ To 5.00	p RZ Base 7.00	Type 50mm SP	10-07-	15	10.50	Nil	2	2.80	End of B	H		
RE RE	MARK	S CAT so	canned loca	ation . Hand dug i	nspection pit			D - Small B - Bulk D LB - Large Env - Envi	le Legend Disturbed (tub) Disturbed Bulk Disturbed ironmental Samp	l ple (Jar + \	Vial + Tub)	UT San P - I W -	- Undisturben nple Undisturbed Water Samp	d 100mm Diameter Piston Sample ole	

REPORT NUMBER

CO	NTRAC	T Sper	ncer Dock	, Dublin							 ;	BOREH SHEET	OLE NO	D. BH10 Sheet 1 of 2	
CO GR	-ordin Ound I	ATES _EVEL (m	AOD)		RIC BO BO	s type Rehol Rehol	_e diame" _e depth	TER (m (m)	nm)	Dando 20 200 11.40	00 	DATE C DATE C	OMME	NCED 13/07/2015 ETED 14/07/2015	
CLI ENC	ENT GINEER	Sper OCS	ncer Dock C	Developme	nt Co. SP EN	t hami Ergy i	MER REF. RATIO (%)	NO.				BORED PROCE	BY SSED E	J.O'Toole BY F.C	
											Sam	ples			0
Depth (m			Des	cription			Legend	Elevation	Depth (m	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe
0	MADE	GROUN	D (Compris	sed of concr	rete slab)	X			0.20						
-1	MADE	GROUNI)	D (Compris	sed of clay v	with red bricka	nd				AA35335	В	1.00		N = 10 (1, 1, 2, 2, 3, 3)	
2									2.00	AA35336	В	2.00		N = 6 (0, 0, 1, 1, 2, 2)	• •
3	Loose Firm g	grey sand rey sandy	y GRAVE SILT	L with cobbl	es	×			3.10	AA35337	В	3.00		N = 7 (0, 0, 1, 2, 2, 2)	°
4						* * * *				AA35338	В	4.00		N = 16 (2, 2, 3, 4, 4, 5)	
5	Dense	grey fine	to coarse :	sandy GRA	VEL with cobb	les %			4.80	AA35339	В	5.00		N = 69/225 mm (1, 4, 5, 56, 8)	
6							9 - 0 A A - 0 A - 0 A A - 0 A - 0 A A - 0 A -			AA35340	В	6.00		N = 44 (2, 6, 9, 11, 12, 12)	
7						8 2 .(.(AA35341	В	7.00		N = 49 (4, 7, 8, 11, 14, 16)	
8										AA35342	В	8.00		N = 53 (5, 7, 11, 12, 14, 16)	
9	Very s cobble	tiff to hard as and occ	black san asional bo	dy gravelly (ulders	CLAY with	6 			9.30	AA35343	В	9.00		N = 54 (4, 8, 10, 14, 18, 12)	
HA	ARD STI	RATA BO	RING/CHI	SELLING		<u> </u>	₹```` ₫						v		_K//// Tails
Fron	n (m)		Time	Comments			Water	Ca	sing	Sealed	Rise	e 1	Fime	Comments	
4 8 1(1.9 3.5 0.3	5.1 9 10.5	(h) 0.75 1.5 2				4.80	<u>De</u> 4.	epth .80	At No	<u> </u>) (1	<u>min)</u> 20	Moderate	
													GF		OGRES
INS			AILS				Date		Hole	Casing	Dep	oth to	Comme	ents	
Date Tip Depth RZ Top RZ Base Type 14-07-15 4.00 0.50 4.00 50mm SP					13-07-14 14-07-15	4 5	Depth 7.00 7.00	7.00 7.00	2 3	ater .80 .00	End of 1s Start of 2	st Day 2nd Day			
RE	REMARKS CAT scanned location . Hand dug inspection pit								D - Smal B - Bulk I LB - Larg Env - Fro	I Disturbed (tub) Disturbed ge Bulk Disturbed vironmental Sam	l ble (Jar + V	UT - Undisturbed 100 Sample P - Undisturbed Pistor W - Water Sample		- Undisturbed 100mm Diameter nple Undisturbed Piston Sample Water Sample	

REPORT NUMBER

1	8489
---	------

CONT	TRACI	Spe	encer Do	ck , Dub	llin			_					BOREH SHEET	IOLE N	10.	BH10 Sheet 2 of 2	
CO-O	ORDINA UND L	ATES EVEL (n	n AOD)				RIG TYP BOREHO BOREHO	e Dle Diame Dle Depti	ETER (I H (m)	mm)	Dando 20 200 11.40	000	DATE (DATE (COMM COMPI	ENC LETI	ED 13/07/2015 ED 14/07/2015	
	NT NEER	Spe	encer Doo	ck Deve	lopment	Co.	SPT HAN	MMER REF	F. NO.				BORED) BY	BY	J.O'Toole F C	
							LILLING		9			San	nples				
Depth (m)			D)escripti	on			Legend	Flevation	Depth (m)	Ref. Number	Sample Type	Depth (m)		Kecovery	Field Test Results	Standpipe Details
10 v	Very st cobbles	iff to hard and oc	d black s casional	andy gr boulder	avelly CL s <i>(continu</i>	AY with ued)				11 40	AA35344	В	10.00		_	N = 68 (6, 11, 12, 19, 12, 25)	
12 13 13 14 15 16	End of	Borehold	e at 11.4	0 m													
- HAR		ATA BO	RING/C	HISELL	ING										WA		AILS
From	(m) T	o (m)	Time	Comm	ents			Wate	r Ca	asing	Sealed	Ris	e .	Time	C	omments	
4.9 8.5 10.3	3	5.1 9 10.5	(h) 0.75 1.5 2					Strike	e D	epth	At	<u> </u>		<u>min)</u>			
INCT	ALL A7		тане					Det		Hole	Casing	De	pth to	0	5RO		GRESS
Da 14-0	ate 07-15	Tip Dep 4.00	th RZ T	op RZ 0 4	Base .00	Typ 50mm	e I SP	15-07-	e -15	Depth 10.50	Depth Nil	Ň	/ater 1.80	End of	BH	5	
REMA	ARKS	CAT sca	anned loo	cation .	 Hand dug	g inspec	tion pit			D - Sma B - Bulk LB - Lan Env - Er	I Disturbed (tub) Disturbed (tub) Disturbed ge Bulk Disturbed vironmental Sam	d ple (Jar +)	Vial + Tub)	U S P W	T - Uno ample - Undis / - Wate	disturbed 100mm Diameter sturbed Piston Sample er Sample	

REPORT NUMBER

CO	NTRAC	T Spe	encer Dock	, Dublin								BOREH	OLE NO	BH11	
CO-	-ORDIN	ATES _EVEL (n	n AOD)		RIG BOI BOI	TYPE REHOL REHOL	E DIAME E DEPTH	TER (m (m)	m)	Dando 20 200 12.00	00	DATE C	OMMEN OMPLE	Sheet 1 012 NCED 15/07/2015 TED 16/07/2015	
		Spe	encer Dock	Developmer	it Co. SPT			NO.				BORED	BY	J.O'Toole	
		00									Sar	nples		1 1.0	
Depth (m)			Des	cription			Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe
0	MADE red bri	GROUN	ID (Compris Ibble)	ed of black	gravelly clay w	ith				AA33345	В	1.00		N = 4 (0, 0, 1, 1, 1, 1)	
2									2.00	AA33346	В	2.00		N = 10 (1, 2, 2, 3, 2, 3)	0 0
3	Mediu GRAV	m dense 'EL	grey fine to	coarse sligh	tly clayey	0- 0- 0- 0- 0- 0-			2.90	 AA33347	В	3.00		N = 14 (2, 3, 3, 4, 4, 3)	 ○ ○ ○ ○ ○
4						0- 0- 0- 0- 0- 0- 0- 0-				AA33348	В	4.00		N = 17 (1, 2, 3, 4, 5, 5)	<u> </u>
5	Mediu	m dense m dense	COBBLES	and boulder	s andv GRAVEL				5.50 5.80	AA33349	В	5.00		N = 24 (1, 3, 4, 6, 7, 7)	
6	with co lenses	obbles an /layers of	d occasiona f fine brown	al boulders (blowing sar	Occasional nd)	0.0.0 0.00				AA33350	В	6.00		N = 31 (2, 4, 6, 7, 8, 10)	
7							2. 0. 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0			AA37801	В	7.00		N = 44 (4, 6, 9, 12, 11, 12)	
8						0.00 C				AA37802	В	8.00		N = 55 (6, 9, 11, 14, 14, 16)	
9) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	2.07.0 2.02 2.02 2.0 2.0 2.0 2.0 2.0			AA37803	В	9.00		N = 55 (4, 7, 12, 13, 16, 14)	
HA		RATA BO		SELLING		· / /						· · · _	Ŵ	ATER STRIKE DET	AILS
ron	n (m)	To (m)	(h)	omments			VVater Strike	Cas Dei	oth	Sealed At	Ris To	se T D (n	ime (nin)	Comments	
5 7 9 11 11	.5 .4 .2 1.6 1.7	5.8 7.6 9.5 11.8 12	1.5 0.5 0.75 0.5 2				5.10	5.2	10	No	3.0	0	20	Moderate	0000
									Hole	Casing	De	oth to	GR		GRES
Date Tip Depth RZ Top RZ Base Type 16-07-15 5.00 1.00 5.00 50mm SP						Date)epth	Depth	N N	Vater	Comme	ents		
REMARKS CAT scanned location . Hand dug inspection pit for s						pit for s	r services Sample Legend D - Small Disturbed (tub) B - Bulk Disturbed LB - Large Bulk Disturbed				 	UT - Undisturbed 100mm Diameter Sample P - Undisturbed Piston Sample			

REPORT NUMBER

1	8489
---	------

CO	NTRA	CT Sp	encer Do	ck , Dublin						E	BOREHC BHEET	DLE NO.	BH11 Sheet 2 of 2	
CO GR	-ordi ound	NATES	m AOD)		RIG TYP BOREH BOREH	Pe Ole diame Ole depth	ETER (m H (m)	1 m) 2	Dando 200 200 2.00	00 C	DATE CO	OMMEN OMPLET	CED15/07/2015ED16/07/2015	
CLI ENG	ENT GINEEI	Sp R OC	encer Do CSC	ck Development C	o. SPT HA	MMER REF Y RATIO (%	5. NO.			E	BORED E PROCES	BY SED BY	J.O'Toole F.C	
										Sam	ples			
Depth (m)			C	Description		Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe Details
10	Medi with lense	um dense cobbles a es/layers o	e to dense nd occasi of fine bro	grey slightly sand onal boulders (Occ wn blowing sand)	y GRAVEL casional (continued)			11 10	AA37804	В	10.00		N = 58 (7, 10, 10, 12, 18, 18)	
11	Hard	brown/bl sional bou	ack sandy ulders	gravelly CLAY wit	th cobbles and			11.10	_AA37805	В	11.00		(16, 20, 15, 25)	
12	End	of Boreho	le at 12.0	0 m				12.00	AA37806	В	12.00		(16, 28)	
13														
14														
15														
- 16														
17														
18														
19														
-														
HA	RD S	TRATA B	ORING/C	HISELLING		10/		aina	Cooled	D:		WA	ATER STRIKE DET	AILS
Fror 5	m (m) 5.5	To (m) 5.8	(h) 1.5	Comments		Strike		epth	At	То	(m	nin) C	omments	
7 9 1 ⁻ 1	7.4 0.2 1.6 1.7	7.6 9.5 11.8 12	0.5 0.75 0.5 2											00500
INC								Hole	Casing	Den	oth to	GRU		GKE95
16	Date -07-15	Tip De	ETAILS	op RZ Base 0 5.00	Type 50mm SP	16-07-	e [<u>Depth</u> 12.00	Depth Nil	3.	50 E	End of BH	Its	
REI	MARK	S CAT s	canned lo	cation . Hand dug	In Services Sample Legend D - Small Disturbed (tub) B - Buik Disturbed LB - Large Buik Disturbed Env. Environment J Console					al + Tub)	UT - Un Sample P - Und W - Wa	ndisturbed 100mm Diameter e listurbed Piston Sample iter Sample		

REPORT NUMBER

CO CO GR	ORDIN/	T Spen	cer Dock ,	Dublin	RIG BOR BOR	TYPE REHOLI REHOLI	e diame" E depth	TER (m (m)	nm)	Dando 20 200 11.50	00	BOREH SHEET DATE C DATE C	OLE NO	BH12 Sheet NCED 10/07/ ETED 13/07/	2 1 of 2 2015 2015
		Spen	cer Dock [Developmer	nt Co. SPT			NO.				BORED	BY SSED F	P.Thor	mas
			-								Sam	ples			
Depth (m)			Desc	cription			Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Tes Results	Standpipe Details
- 0	CONC	RETE					~~~~		0.20	_					
- 1	MADE with bri	GROUND ck and co	(Compris ncrete frag	ed of grey/t jments)	olack silty grave					AA19239	В	1.00		N = 15 (2, 3, 3, 4,	5(4,4)
2	Soft gr	ey/black sa	andy SILT			×			2.30	AA19240	В	2.00		N = 10 (3, 3, 5, 3,	0, 1, 1)
- 3	Loose	grey/black	very silty v	very sandy	GRAVEL	× × ×	······································		3.20	AA19241	в	3.00		N = 4 (1, 0, 1, 1,	1, 1)
- 4						8 8 8 8 9 7 9 7 9	X X X X X X X X X X X X X X X X X X X X			AA19242	ENV B	4.00-4.5 4.00	50	N = 3 (1, 0, 1, 0,	1, 1)
- 5	Mediur	n dense to GRAVEL v	dense gre vith cobble	ey slightly s es (Occasio	ilty fine to coars nal pockets of	ж. ж. ж. ж.			5.10	AA19243	в	5.00		N = 19 (1, 2, 2, 5,	5, 7)
- 6	fine blc	wing sand)			\$. (0x0 ()x	0.0.0 0.000 0.000			AA19244	В	6.00		N - 20	
- 7						er er ere				AA19245	В	7.00		(2, 2, 4, 5, 5)	9, 12) 0 0 0 0 0 0
- 8						0. (2.) & Car				AA19246	в	8.00		N = 27 (2, 4, 5, 5,	7 8, 9)
- 9						6 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				AA19247	В	9.00		N = 25 (3, 4, 4, 6,	57,8)
<u> </u>						8									
HA			Time				Water	Ca	sing	Sealed	Rise	е Т	V Time	VATER STRIK	EDETAILS
-ror 6 9	0.4 0.3 1.3	6.9 9.6 11.5	(h) ^{Ca} 1.25 0.75 2	omments			Strike 5.10 6.50	De 5. 6.	2010 10 50	At No No	<u>To</u> 4.70 1.50	1) C C C	min) 20 20	Slow Rapid	
1			-												
											1		G	ROUNDWATE	R PROGRESS
INS	TALLAT Date -07-15	TION DET Tip Depth 11.50	AILS RZ Top 5.50	RZ Base 8.50	Type 50mm SP		Date		Hole Depth	Casing Depth	Der W	pth to ater	Comme	ents	
REI	MARKS	CAT scar	 ined locati	on . Hand c	lug pit for servic	ces .			D - Small B - Bulk I LB - Larg	Disturbed (tub) Disturbed (tub) Disturbed e Bulk Disturbed			UT - Sam P - U	Undisturbed 100mm Di nple Jndisturbed Piston Sam	ameter

REPORT NUMBER

18	489
----	-----

CONTRACT	Spencer Dock , Dublin							BOREHO	DLE NO	BH12	
		RIG TYP	F		Г)ando 20	00	SHEET		Sheet 2 of 2	
GROUND LEV	VEL (m AOD)	BOREHO	DLE DIAME	ГЕR (m (m)	1 m) 2	00 1.50		DATE C	OMMEN	ICED 10/07/2015 TED 13/07/2015	
	Spencer Dock Development Co.	SPT HAN	MMER REF.	NO.				BORED	BY	P.Thomas	
ENGINEER	0030	ENERGY	RATIO (%)				San	nples	SED B	<u>т г.с</u>	
Depth (m)	Description		Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe Details
10 Stiff brow Very stiff and occa	n slightly gravelly sandy CLAY to hard lack very gravelly CLAY with isional boulders	cobbles			10.20 10.50 11.50	AA19248 AA19249	В	10.00		N = 50 (5, 8, 9, 10, 14, 17)	
End of Ba	orehole at 11.50 m										
HARD STRA	TA BORING/CHISELLING						Die	.	w	ATER STRIKE DET	AILS
From (m) To 6.4 6 9.3 9 11.3 11	(m) (h) Comments .9 1.25 .6 0.75 1.5 2		Strike		pth	At		e (n	nin) (Comments	
								,	GR	OUNDWATER PRO	GRES
INSTALLATIC Date T 13-07-15	DN DETAILS	Type	Date	[Hole Depth	Casing Depth	De W	pth to /ater	Comme	nts	
REMARKS C	AT scanned location . Hand dug pit fo	or services .			D - Small D D - Small D B - Bulk Dis LB - Large Env - Envir	e Legence Disturbed (tub) sturbed Bulk Disturbed onmental Sam	l ple (Jar + \	Vial + Tub)	UT - U Samp P - Ur W - W	Undisturbed 100mm Diameter le ndisturbed Piston Sample later Sample	

REPORT NUMBER

CONTRACT Spencer Dock , Dublin CO-ORDINATES RIG TYPE BOREHOLE									TER (n		Dando 20 200	00	BOREH SHEET DATE C		D. BH She NCED 16/0	13 et 1 of 2 7/2015	
GRO	OUND	LEVEL (r	n AOD)				BOREH	OLE DEPTH	(m)		11.50		DATE C	OMPLE	ETED 23/0	7/2015	
	ENT SINFER	Spe 2 OC	encer Do SC	ock Develo	opmer	nt Co.	SPT HA	MMER REF.	NO.				BORED	BY SSED F	J.O' SV F.C.	Toole	
										_		Sam	nples				
Depth (m)				Description	n			Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Resu	Γest llts	Standpipe Details
0	MAD	E GROUN	ND (Con	nprised of	concr	ete slab)				0.20	_						
-1	MADE GROUND (Comprised of gravelly clay with brick and rubble fill)										AA37807	В	1.00		N = (1, 1, 2,	10 3, 3, 2)	
2											AA37808	В	2.00		N = (1, 2, 3,	12 2, 4, 3)	0 0 0 0
3	³ Firm grey SILT									3.00	AA37809	В	3.00		N = (2, 2, 3,	16 4, 4, 5)	
4											AA37810	В	4.00		N = (1, 1, 2,	N = 12 (1, 1, 2, 3, 4, 3)	0 0
5	Medium dense to dense grey fine to coarse sandy ⁵ GRAVEL with cobbles								4.80	 AA37811	В	5.00		N = (2, 4, 4,	20 6, 5, 5)	0 0 0 0 0 0	
6								10 0 0 0 10 0 0 10 0 10 0 10 0 10 0 10			AA37812	В	6.00		N = (3, 4, 5,	24 6, 6, 7)	0 0 0 0
7											AA37813	В	7.00		N = (4, 7, 9, 1	53 2, 14, 18)	0 0 0 0
8	Brown	n CLAY w se grey SA	vith cobb	les and bo	oulder	S				8.00 8.50	AA37814	В	8.00		N = 24/ (6, 19	75 mm 9, 24)	
9	9										AA37815	В	9.00		N = (4, 6, 7, 1	43 1, 13, 12)	
HA	RD ST	RATA BO	ORING/0	CHISELLI	NG									v		IKE DE	TAILS
From (m) To (m) Time Comments						Water Strike	Ca	sing pth	Sealed At	Rise	e T	Time min)	Comments				
2.5 2.6 0.5 7.9 8.2 1 8.5 8.6 0.5 9.1 9.3 0.75						5.20	5.	20	No	3.00		20	Moderate				
								Hole	Casing	De	oth to	G		ERPRO	JGRESS		
INS [24-	TALLA Date -07-15	Tion Dep Tip Dep 11.50	oth RZ	Top RZ E 50 11.	Base .50	Typ 50mm	e SP	21-07-1	5	Depth 8.00	Depth 8.00	5	5.20	Comme End of 2r	ents nd day		
REMARKS CAT scanned location . Hand dug inspection pit									D - Smal B - Bulk I LB - Larg Env - Env	I Disturbed (tub) Disturbed Disturbed Je Bulk Disturbed vironmental Sam	 	/ial + Tub)_	UT - Sam P - U W -	Undisturbed 100mr nple Jndisturbed Piston S Water Sample	n Diameter ample		

REPORT NUMBER

18	489
----	-----

				Dublin								BODEH			
00	NIRAC	si spe	encer Dock	, Dublin								SHEET		Sheet 2 of	2
CO GR	-ordin Ound	IATES LEVEL (n	n AOD)		RIG BOR BOR	TYPE EHOL EHOL	.e diame .e depti	ETER (n H (m)	nm) 2	Dando 20 200 11.50	00	DATE C DATE C	NCED 16/07/201 ETED 23/07/201	5 5	
CLI	ENT	Spe	encer Dock	Developme	nt Co. SPT	HAM	MMER REF. NO.						BY	J.O'Toole	
ENG	GINEEF	00	SC		ENE	ENERGY RATIO (%)						PROCES	SSED E	BY F.C	
Depth (m)			Des	cription			Legend	Elevation	Depth (m)	Ref. Number	Sample Type	(m)	Recovery	Field Test Results	Standpipe Details
- 10	Coars	e grey SA	ND with co	bbles (cont	inued)					AA37816	в	10.00		N = 58 (6, 10, 12, 14, 16,	16)
-	Fine t	o coarse	GRAVEL			0	0000		10.50	_					
- 11	11 Stiff black sandy gravelly CLAY with cobbles								11.50	AA37817	в	11.00		N = 57 (2, 7, 11, 16, 15, 1	5) 0 0
12	End c	f Borehol	e at 11.50 r	n					11.50						
- - - - - - - - - - - - - - - - - - -															
-	ים מע												,		
Fror	HARD STRATA BORING/CHISELLING							r Ca	sing	Sealed	Ris	se T	ime	Comments	ETAILS
2 7 8 9	2.5 7.9 8.5 9.1	2.6 8.2 8.6 9.3	(h) 0.5 1 0.5 0.75				Strike	e De	epth	At	T(<u>o (</u> r	nin)		
INS			TAILS				Date	e .	Hole	Casing	De	epth to	Comme	ents	VOORE33
24	Date -07-15	Tip Dep 11.50	oth RZ Top 0.50	RZ Base 11.50	Type 50mm SP		23-07-	15 15	<u>Depth</u> 11.50 11.50	Depth 11.50 Nil	V	Water Ostimitents 3.80 End of 3rd Day 2.80 End of BH			
REMARKS CAT scanned location . Hand dug inspection pit									D - Small B - Bulk D LB - Large Env - Env	Legence Disturbed (tub) isturbed Bulk Disturbed ironmental Sam	j j ple (Jar +	Vial + Tub)	UT - Sam P - L W - 1	- Undisturbed 100mm Diameter nple Jndisturbed Piston Sample Water Sample	

REPORT NUMBER

COI	-ORDIN	ATES	encer Dock	, Dublin	RIG T	YPE			Dando 20	00			• BH14 Sheet 1 of 2	
GRO	OUND	LEVEL (n	n AOD)		BORE	HOLE DIAN	IETER (r ſH (m)	nm)	200 13.70		DATE C	OMPLE	TED 30/06/2015	
	ENT GINEEF	Spe R OC	encer Dock SC	Developmen	t Co. SPT H ENER	IAMMER RE GY RATIO (F. NO. %)				BORED	BY SSED B	J.O'Toole Y F.C	
										San	nples			a
Depth (m			Des	scription		Legend	Elevation	Depth (m	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpip Details
0	MAD	E GROUN	ID (Compri	sed of concre	ete slab)			0.20						
1	MADI and ru	E GROUN Jbble)	ID (Compri	sed of gravel	ly clay with brick		***		AA35312	В	1.00		N = 5 (0, 0, 1, 1, 1, 2)	
2	MAD	E GROUN e,brick,pip	ID (Compri e)	sed of silt wit	h		× × ×	2.00	AA35313	В	2.00		N = 7 (1, 1, 1, 2, 2, 2)	
3							XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		AA35314	В	3.00		N = 12 (1, 1, 2, 3, 3, 4)	
	Soft		with occord	onal fina aray	vol		×	3.80						
4	Soft g	rey SILT	WILLI OCCASI	unai nine grav		× × × × ×		4.10	AA35315	В	4.00		N = 9 (1, 1, 2, 2, 2, 3)	
- 5	Medium dense to dense grey fine to coarse sandy GRAVEL with cobbles							4.80	 AA35316	В	5.00		N = 36 (2, 6, 7, 7, 9, 13)	
6						0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			AA35317	в	6.00		N = 45 (6, 8, 10, 10, 11, 14)	
7									AA35318	В	7.00		N = 53 (4, 9, 11, 12, 14, 16)	
8	Stiff b Very s cobble	rown SIL stiff to har es	T/CLAY d black san	dy gravelly C	LAY with		- - - - - -	8.00 8.10	AA35319	В	8.00		N = 20 (2, 4, 5, 5, 5, 5)	
9							- - - - - - - - - - - - - - - -		AA35320	В	9.00		N = 42 (2, 6, 9, 9, 10, 14)	
HA	RD ST	RATA BO	ORING/CHI	SELLING			-					w	ATER STRIKE DET	AILS
From (m) To (m) Time Comments						Wat	er Ca	asing	Sealed At	Rise	e Ti	ime nin)	Comments	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					4.8	0 4	.80	No	4.00	0 2	20		CRESS	
							to	Hole	Casing	De	pth to	Commo	CONDIVATER PRU	OKE33
30-	Date -06-15	Tip Dep 7.00	th RZ Top 4.00	RZ Base 7.00	Type 50mm SP	Da	ite	Depth	Depth	Ň	ater	Comme	ents	
RE	MARKS	CAT sc	anned locat	tion.Hand du			D - Sma B - Bulk LB - Larg	I Disturbed (tub) Disturbed ge Bulk Disturbed	1	I	UT - U Samp P - U	Undisturbed 100mm Diameter ple Indisturbed Piston Sample		

REPORT NUMBER

CONTR	ACT S	Spence	r Dock ,	Dublin							!	BOREHO SHEET	DLE NC	BH14 Sheet 2 of 2	
CO-ORDINATES RIG TYPE BOREHOLE GROUND LEVEL (m AOD) BOREHOLE							'E Dle diame	ETER (m	1 m) 2	Dando 20 200	00	DATE CO	OMME	NCED 26/06/2015	
GROUN	ID LEVEL	(m AC	DD)			BOREHO	OLE DEPTH	-l (m)	, 1	3.70		DATE CO	OMPLE	TED 30/06/2015	
	· S	Spencer	r Dock D	evelopmer	nt Co.	SPT HAMMER REF. NO.						BORED E	3Y SED B	J.O'Toole	
						LILINO		<i>י</i> ן	-		Sam	ples			
Depth (m)			Desc	ription			Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe Details
¹⁰ Ver	ry stiff to h obles <i>(con</i>	ard bla tinued)	ick sand	y gravelly (CLAY with	ı	- <u>XO</u>		10.50	AA35321	В	10.00		N = 31 (4, 7, 6, 7, 8, 10)	
Dense grey silty sandy clayey GRAVEL (Possibly very gravelly CLAY									10.50	-					
11 Very stiff grey gravelly CLAY										AA35322	В	11.00		N = 54 (6, 16, 13, 14, 13, 14)	
12									12.50	AA35323	в	12.00		N = 35 (4, 6, 9, 8, 9, 9)	
Hard black sandy gravelly CLAY with cobbles									12 70	AA35324	В	13.00		N = 65 (8, 12, 14, 16, 18, 17)	
En(d of Boreh	nole at [·]	13.70 m						13.70						
15															
- 16															
- 17															
- 18															
- 19															
-															
HARD	STRATA	BORIN Tin	ne	ELLING			Water	r Ca	sina ! !	Sealed	Rise	e Tii	me		AILS
From (m) To (m) The (h) Comments 2.8 3 1					Strike	De	pth	At	То	(m	nin)	Comments			
5.6 9.4 11.4 13.1	5.9 9.6 11.8 13.7	0.7 0. 1.2 2	75 5 25												00505
INCTAU							Dete		Hole	Casing	Der	oth to	GF		GRESS
Date 30-06-1	EATION L Tip D 15 7.0	epth F	-3 RZ Top 4.00	RZ Base 7.00	Tyj 50mn	pe n SP	29-06- 30-06-	1 5 15	Depth 12.00 13.50	Depth 12.00 Nil	W 3 2	ater C	End of 1s	t Day	
30-00-15 7.00 4.00 7.00 50mm SP REMARKS CAT scanned location.Hand dug inspection pit								Sampl D - Small I B - Bulk D LB - Large	e Legend Disturbed (tub) isturbed Bulk Disturbed	ble (Jar + \	UT - Undisturbed 100mm Diameter Sample P - Undisturbed Piston Sample				

Appendix C – Laboratory Reports Soil Samples

AECOM

Ireland

4th Floor Adelphi Plaza

Georges Street Upper Dun Laoghaire, Co Dublin

Adelphi Centre

Jones Environmental Laboratory

Registered Address : Unit 3 Deeside Point, Zone 3, Deeside Industrial Park, Deeside, CH5 2UA. U

Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention :	Brian Duggan
Date :	21st September, 2015
Your reference :	
Our reference :	Test Report 15/8159 Batch 1 15/8407 Batch 1 15/8073 Batch 1 15/10240 Batch 1 15
Location :	City Block 2 & 7
Date samples received :	
Status :	Final report
Issue :	1

Compiled By:

5.60-20

Simon Gomery BSc Project Manager

Client Name: Reference: Location:

Contact:

AECOM

City Block 2 & 7

Brian Duggan

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

J E Job No.	15/8073	15/8073	15/8073	15/8073	15/8073	15/8159	15/8159	15/8159	15/8159	15/8159			
J E Sample No.	7-9	16-18	27-29	30-32	42-44	22-24	25-27	34-36	37-39	46-48			
Sample ID	TP206	TP207	TP210	TP210	TP211	TP201	TP201	TP202	TP202	TP203			
Depth	2.5-3.5	2.3-3.6	2.3-3.5	3.5-4.2	3.0-4.0	2.70-3.80	3.80-4.50	2.20-3.40	3.40-3.70	3.90-4.10			
000 No (miss											Please se abbrevi	e attached ne ations and ac	otes for all cronyms
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date	28/05/2015	28/05/2015	28/05/2015	28/05/2015	28/05/2015	29/05/2015	29/05/2015	29/05/2015	29/05/2015	29/05/2015			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
Batch Number	1	1	1	1	1	1	1	1	1	1		Unite	Method
Date of Receipt	01/06/2015	01/06/2015	01/06/2015	01/06/2015	01/06/2015	03/06/2015	03/06/2015	03/06/2015	03/06/2015	03/06/2015	LOD/LOR	Units	No.
Antimony	3	5	3	2	2	3	83 _{AA}	120 _{AB}	27 _{AA}	3	<1	mg/kg	TM30/PM15
Antimony	-	-	-	-	-	-	-	-	-	-	<1	mg/kg	TM30/PM62
Arsenic [#]	90.2	35.2	66.4	38.1	110.4	25.2	223.7	606.9 _{AA}	148.2	180.4	<0.5	mg/kg	TM30/PM15
Arsenic	-	-	-	-	-	-	-	-	-	-	<0.5	mg/kg	TM30/PM62
Barium [#]	51	310	81	69	55	46	305	81	78	29	<1	mg/kg	TM30/PM15
Barium	-	-	-	-	-	-	-	-	-	-	<1	mg/kg	TM30/PM62
Cadmium [#]	0.8	0.6	9.1	2.8	3.5	1.1	35.9 _{AA}	87.7 _{AA}	4.5	<0.1	<0.1	mg/kg	TM30/PM15
Cadmium	-	-	-	-	-	-	-	-	-	-	<0.1	mg/kg	TM30/PM62
Chromium #	106.9	58.2	52.2	88.0	105.0	55.0	167.2	38.7	82.5	146.2	<0.5	mg/kg	TM30/PM15
Chromium	-	-	-	-	-	-	-	-	-	-	<0.5	mg/kg	TM30/PM62
Copper [#]	119	66	185	42	294 _{AA}	63	2031 _{AB}	10930 _{AD}	625 _{AA}	24	<1	mg/kg	TM30/PM15
Copper	-	-	-	-	-	-	-	-	-	-	<1	mg/kg	TM30/PM62
Lead [#]	85	334	443	479	714	183	18300 _{AB}	18580 _{AD}	537	36	<5	mg/kg	TM30/PM15
Lead	-	-	-	-	-	-	-	-	-	-	<5	mg/kg	TM30/PM62
Mercury"	0.2	2.0	0.7	<0.1	<0.1	0.6	<0.1	1.5	0.7	1.6	<0.1	mg/kg	TM30/PM15
Mercury	-	-	-	-	-	-	-	-	-	-	<0.1	mg/kg	TM30/PM62
Molybdenum	13.5	5.1	5.7	0.5	10.0	5.2	34.0AA	76.0 _{AA}	10.1	10.5	<0.1	mg/kg	TM30/PM62
Nickel [#]	65	31.9	22.6	- 11.6	22.0	31.7	- 15.2	- 19.3	- 14 3	49	<0.7	ma/ka	TM30/PM15
Nickel	-	-	-	-	-	-	-	-	-	-	<0.7	ma/ka	TM30/PM62
Selenium [#]	<1	2	1	1	5	1	1	4	2	<1	<1	mg/kg	TM30/PM15
Selenium	-	-	-	-	-	-	-	-	-	-	<1	mg/kg	TM30/PM62
Zinc [#]	1523	145	5020	964	1069	917	16460 _{4B}	17920	3174	297	<5	mg/kg	TM30/PM15
Zinc	-	-	-	-	-	-	-	-	-	-	<5	mg/kg	TM30/PM62

Client Name: Reference: Location:

Contact:

AECOM

City Block 2 & 7

Brian Duggan

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

J E Job No. 15/8073 15/8073 15/8159 15/8159 15/8073 15/8073 15/8073 15/8159 15/8159 15/8159 J E Sample No 7-9 16-18 27-29 30-32 42-44 22-24 25-27 34-36 37-39 46-48 TP206 Sample ID TP207 TP210 TP210 TP211 TP201 TP201 TP202 TP202 TP203 2 20-3 40 Depth 25-35 23-36 23-35 35-42 30-40 2 70-3 80 3 80-4 50 3 40-3 70 3.90-4.10 Please see attached notes for all abbreviations and acronyms COC No / misc Containers VJT V.IT V.IT V.IT V.IT V.IT V.IT VJT VJT VJT Sample Date 28/05/2015 28/05/2015 28/05/2015 28/05/2015 28/05/2015 29/05/2015 29/05/2015 29/05/2015 29/05/2015 29/05/2015 Sample Type Soil Soil Soi Soil Soil Soil Soil Soil Soil Soil Batch Number 1 1 1 1 1 1 1 1 1 Method LOD/LOR Units No. Date of Receipt 01/06/2015 01/06/2015 01/06/2015 01/06/2015 01/06/2015 03/06/2015 03/06/2015 03/06/2015 03/06/2015 03/06/2015 PAH MS Naphthalene [#] <0.04 0 15 0.08 <0.04 <0.04 <0.04 <0.04 0.05 0.11 <0.04 <0.04 mg/kg TMA/PM8 TM4/PM8 Acenaphthylene -0.03 0.06 -0.03 -0.03 -0.03 -0.03 -0.03 0.05 -0.03 -0.03 -0.03 mg/kg Acenaphthene # ~0.05 0 10 ~0.05 <0.05 <0.05 -0.05 <0.05 0.06 ~0.05 ~0.05 -0.05 mg/kg TM4/PM8 Fluorene * -0.04 0 22 0.06 -0.04 -0.04 -0.04 -0.04 0.08 0.06 -0.04 -0.04 mg/kg TM4/PM8 Phenanthrene¹ 0.06 2 14 0.38 -0.03 0.25 0.04 0 10 1 25 0.73 -0.03 -0.03 mg/kg TM4/PM8 TM4/PM8 Anthracene ¹ <0.04 0.28 0.08 <0.04 0.06 <0.04 < 0.040.15 < 0.04< 0.04<0.04 mg/kg TM4/PM8 Fluoranthene 0.06 1 97 0 44 <0.03 0.22 0 14 0.08 1.83 0.63 <0.03 <0.03 mg/kg TM4/PM8 Pyrene* <0.03 1.37 0.38 <0.03 0 17 0 1 1 0.08 1 27 0 4 4 <0.03 <0.03 mg/kg TM4/PM8 Benzo(a)anthracene <0.06 0 79 0.29 <0.06 0 12 0.18 0.08 0.98 0 44 0.09 <0.06 mg/kg Chrysene[#] 0.04 0.88 0.30 <0.02 0 10 0 14 0.07 1 01 0 48 0.06 <0.02 mg/kg TM4/PM8 <0.07 TM4/PM8 Benzo(bk)fluoranthene # < 0.07 1.03 0.30 < 0.07 0.11 0.21 0.10 1.18 0.47 0.09 mg/kg TM4/PM8 Benzo(a)pyrene [#] < 0.04 0.51 0.19 < 0.04 0.06 0.12 0.06 0.47 0.14 < 0.04 < 0.04 mg/kg TM4/PM8 Indeno(123cd)pyrene < 0.04 0.34 0.09 < 0.04 < 0.04 0.08 0.05 0.34 0.11 < 0.04 < 0.04 mg/kg TM4/PM8 Dibenzo(ah)anthracene < 0.04 0.10 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 0.08 < 0.04 < 0.04 < 0.04 mg/kg TM4/PM8 < 0.04 0.35 < 0.04 < 0.04 0.08 0.05 < 0.04 < 0.04 Benzo(ghi)perylene [#] 0.10 0.34 0.13 ma/ka TM4/PM8 Coronene < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 ma/ka TM4/PM8 PAH 6 Total <0.22 <0.22 0.39 0.63 <0.22 <0.22 4.20 1.12 0.34 4.16 1.48 ma/ka PAH 17 Total TM4/PM8 < 0.64 10.29 2.69 < 0.64 1.09 1.10 0.67 9.14 3.74 < 0.64 < 0.64 ma/ka TM4/PM8 Benzo(b)fluoranthene < 0.05 0.74 0.22 < 0.05 0.08 0.07 0.85 0.06 < 0.05 0.15 0.34 mg/kg <0.02 0.29 0.08 <0.02 <0.02 TM4/PM8 Benzo(k)fluoranthene 0.03 0.06 0.03 0.33 0.13 0.03 mg/kg TM4/PM8 Benzo(j)fluoranthene mg/kg <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 PAH Surrogate % Recovery 94 108 102 106 107 TM4/PM8 104 95 102 106 108 <0 % Methyl Tertiary Butyl Ether # <2 ug/kg TM15/PM10 Benzene ⁱ <3 ug/kg TM15/PM1 Toluene [#] <3 ug/kg TM15/PM1 TM15/PM1 Ethylbenzene * <3 ug/kg TM15/PM1 p/m-Xylene --<5 ug/kg TM15/PM1 o-Xylene --<3 ug/kg TM15/PM1 Surrogate Recovery Toluene D8 -<0 % -TM15/PM10 ogate Recovery 4-Bromofluorobenze <0 % -----<30 871 249 56 91 387 <30 90 <30 <30 <30 TM5/PM8 EPH (C8-C40)# mg/kg C8-C40 Mineral Oil (Calculation) - Rilta <30 38 <30 <30 <30 <30 <30 <30 <30 <30 <30 TM5/PM8 mg/kg

Client Name: Reference: Location:

Contact:

AECOM

City Block 2 & 7

Brian Duggan

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

15/8073 15/8159 J E Job No 15/8073 15/8073 15/8073 15/8073 15/8159 15/8159 15/8159 15/8159 J E Sample No 7-9 16-18 27-29 30-32 42-44 22-24 25-27 34-36 37-39 46-48 Sample ID TP206 TP207 TP210 TP210 TP211 TP201 TP202 TP201 TP202 TP203 Denth 25-35 23-36 23-35 35-42 30-40 2 70-3 80 3 80-4 50 2 20-3 40 3 40-3 70 3.90-4.10 Please see attached notes for all abbreviations and acronyms COC No / misc Containers VJT VJT V.IT V.IT V.IT V.IT V.IT VJT VJT VJT Sample Date 28/05/2015 28/05/2015 28/05/2015 28/05/2015 28/05/2015 29/05/2015 29/05/2015 29/05/2015 29/05/2015 29/05/2015 Sample Type Soil Soil Soi Soil Soil Soil Soil Soil Soil Soil Batch Number 1 1 1 1 1 1 1 1 Method LOD/LOR Units No. Date of Receipt 01/06/2015 01/06/2015 01/06/2015 01/06/2015 01/06/2015 03/06/2015 03/06/2015 03/06/2015 03/06/2015 03/06/2015 TPH CWG Aliphatics >C5-C6# -01 <0.5_{AA} -01 -01 -01 -01 -01 <0.5_{AA} -01 -01 -01 mg/kg TM36/PM1 >C6-C8[#] -01 <0.5_{AA} -01 -01 -01 -01 -01 <0.5_{AA} -01 -01 -01 mg/kg TM36/PM1 C8-C10 TM36/PM1 -01 <0.5_{AA} -01 -01 -01 -01 -01 <0.5_{AA} -01 -01 -01 mg/kg >C10-C12 -02 <0.2 -02 -02 -02 -02 -02 -02 <0.2 -02 -02 mg/kg TM5/PM16 TM5/PM16 >C12-C16* <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 mg/kg TM5/PM16 >C16-C21* <7 12 <7 <7 <7 <7 <7 <7 <7 <7 <7 mg/kg >C21-C35* <7 26 <7 <7 <7 15 <7 <7 <7 <7 <7 mg/kg TM5/PM16 TM5/PM16 >C35-C40* <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 mg/kg Total aliphatics C5-40 <26 38 <26 <26 <26 <26 <26 <26 <26 <26 <26 mg/kg >C6-C10 TM36/PM12 <0.1 <0.1 < 0.1 < 0.1 <0.5 < 0.1 < 0.1 < 0.1 < 0.1 <0.5_{AA} < 0.1 mg/kg >C10-C25 TM5/PM16 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 mg/kg TM5/PM16 >C25-C35 <10 26 <10 <10 <10 <10 <10 <10 <10 <10 <10 mg/kg Aromatics >C5-EC7 TM36/PM12 < 0.1 < 0.1 < 0.1 <0.1 <0.1 < 0.1 < 0.1 <0.1 <0.1 ma/ka <0.5_{AA} <0.5_{AA} >EC7-EC8 TM36/PM1; <0.1 <0.1 <0.1 < 0.1 <0.5_{AA} < 0.1 < 0.1 < 0.1 < 0.1 <0.5_{AA} < 0.1 ma/ka TM36/PM1: >EC8-EC10⁴ <0.1 <0.1 <0.1 <0.1 < 0.1 <0.5_{AA} < 0.1 < 0.1 < 0.1 <0.5_{AA} < 0.1 ma/ka >EC10-EC12 TM5/PM16 < 0.2 <0.2 <0.2 < 0.2 <0.2 <0.2 < 0.2 <0.2 <0.2 <0.2 <0.2 ma/ka EC12-EC16 TM5/PM16 <4 15 <4 <4 <4 <4 <4 <4 <4 <4 <4 mg/kg EC16-EC21 22 TM5/PM16 <7 98 15 <7 <7 <7 <7 19 <7 <7 mg/kg EC21-EC35 TM5/PM16 <7 232 95 10 <7 40 13 75 92 <7 mg/kg <7 EC35-EC40 TM5/PM16 <7 32 10 <7 <7 22 28 <7 mg/kg <7 <7 <7 Total aromatics C5-40 <26 377 120 <26 <26 <26 119 139 <26 40 <26 mg/kg otal aliphatics and aromatics(C5-40) <52 415 120 <52 <52 <52 <52 119 139 <52 <52 mg/kg >EC6-EC10 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.5 <0.1 <0.1 <0.1 mg/kg TM36/PM1: <0.5 EC10-EC25 <10 167 30 <10 <10 <10 <10 43 <10 <10 mg/kg TM5/PM16 41 >EC25-EC35 <10 182 81 <10 <10 40 13 65 73 <10 <10 mg/kg TM5/PM16 MTBE # TM31/PM12 <5 <25_{AA} <5 <5 <5 <5 <5 <25**AA** <5 <5 <5 ug/kg TM31/PM1: Benzene # <5 <25 <5 <5 <5 <5 <5 <25**AA** <5 <5 <5 ug/kg TM31/PM1: Foluene [#] <5 <25**AA** 13 <5 <5 <5 <5 <25**AA** <5 <5 <5 ug/kg <5 <5 <5 <5 <25**AA** <5 TM31/PM1: Ethylbenzene # <25**AA** <5 <5 <5 <5 ug/kg <5 <25**AA** <5 <5 <5 <5 <5 <5 TM31/PM1: m/p-Xylene # <5 <25**AA** <5 ug/kg <5 <5 TM31/PM12 o-Xylene * <25_{AA} <5 <5 <5 <5 <25_{AA} <5 <5 <5 ug/kg <5 TM17/PM8 PCB 28 # <5 7 <5 <5 <5 <5 <5 <5 <5 <5 ug/kg <5 <5 <5 <5 <5 <5 <5 <5 TM17/PM8 PCB 52# <5 <5 <5 ug/kg PCB 101 # <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 TM17/PM8 <5 ug/kg PCB 118[#] <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 TM17/PM8 <5 ug/kg PCB 138* <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 TM17/PM8 <5 ug/kg PCB 153* <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 ug/kg TM17/PM8 PCB 180 # <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 ug/kg TM17/PM8 Total 7 PCBs[#] <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 ug/kg TM17/PM8

Client Name:
Reference:
Location:
Contact:

AECOM

City Block 2 & 7

Brian Duggan

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

											_		
J E Job No.	15/8073	15/8073	15/8073	15/8073	15/8073	15/8159	15/8159	15/8159	15/8159	15/8159			
J E Sample No.	7-9	16-18	27-29	30-32	42-44	22-24	25-27	34-36	37-39	46-48	1		
Sample ID	TP206	TP207	TP210	TP210	TP211	TP201	TP201	TP202	TP202	TP203			
Depth	2.5-3.5	2.3-3.6	2.3-3.5	3.5-4.2	3.0-4.0	2.70-3.80	3.80-4.50	2.20-3.40	3.40-3.70	3.90-4.10	Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and ac	cronyms
Containers	VJT	1											
Sample Date	28/05/2015	28/05/2015	28/05/2015	28/05/2015	28/05/2015	29/05/2015	29/05/2015	29/05/2015	29/05/2015	29/05/2015	1		
Sample Type	Soil	1											
Batch Number	1	1	1	1	1	1	1	1	1	1			Mastha al
Date of Receipt	01/06/2015	01/06/2015	01/06/2015	01/06/2015	01/06/2015	03/06/2015	03/06/2015	03/06/2015	03/06/2015	03/06/2015	LOD/LOR	Units	No.
Natural Moisture Content	15.9	42.8	27.5	18.4	16.1	37.8	14.4	30.2	19.4	24.9	<0.1	%	PM4/PM0
Natural Moisture Content	-	-	-	-	-	-	-	-	-	-	<0.1	%	PM4/PM0
Moisture Content	13.7	30.0	21.6	15.6	13.9	27.5	12.6	23.2	16.2	19.9	<0.1	%	PM4/PM0
Hexavalent Chromium #	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/kg	TM38/PM20
Chromium III	106.9	58.2	52.2	88.0	105.0	55.0	167.2	38.7	82.5	146.2	<0.5	mg/kg	NONE/NONE
	-	-	-	-	-	-	-	-	-	-	<0.5	mg/kg	NONE/NONE
Total Organic Carbon #	0.41	3.95	2.50	0.71	0.52	1.82	0.31	1.61	0.40	0.37	<0.02	%	TM21/PM24
Loss on Ignition [#]	1.3	10.6	4.4	1.8	2.1	5.7	1.1	2.0	1.7	2.0	<1.0	%	TM22/PM0
pH [#]	5.92	7.39	7.50	8.02	7.94	7.48	7.40	6.63	7.47	5.81	<0.01	pH units	TM73/PM11
Mass of raw test portion	0.1167	0.1279	0.111	0.1029	0.1068	0.1253	0.1199	0.1219	0.1294	0.1254		kg	NONE/PM17
Mass of dried test portion	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09		kg	NONE/PM17
		1	1	1	1	1	1	1	1	1	1 '	1	
Client Name: Reference: Location:

Contact:

AECOM

City Block 2 & 7

Brian Duggan

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

J E Job No. 15/8159 15/8159 15/8159 15/8407 15/8407 15/8407 15/9506 15/9992 15/10042 15/10240 J E Sample No 58-60 61-63 70-72 25-27 31-33 34-36 13-15 1-4 1-4 1-4 TP205 TP205 BH14-4.0-5.0 Sample ID TP208 TP204 TP209 TP209 BH9 BH10 BH12 3.00-4.00 4 00-4 30 2 80-3 70 3.30-4.00 2 70-3 70 3.70-4.00 4 00-5 00 Depth 4m - 5m 4 0-5 0 Please see attached notes for all abbreviations and acronyms COC No / misc Containers VJT VJT VJT VJT V.IT VJT VJT VJT VJT VJT Sample Date 27/05/2015 27/05/2015 29/05/2015 04/06/2015 04/06/2015 04/06/2015 30/06/2015 09/07/2015 10/07/2015 13/07/2015 Sample Type Soil Soil Soi Soil Soil Soil Soil Soil Soil Soil Batch Number 1 1 1 1 1 1 1 Method LOD/LOR Units No. Date of Receipt 03/06/2015 03/06/2015 03/06/2015 08/06/2015 08/06/2015 08/06/2015 02/07/2015 13/07/2015 14/07/2015 17/07/2015 TM30/PM1 Antimony 3 5 6 3 2 1 2 2 2 <1 mg/kg Antimony 7 <1 mg/kg TM30/PM6 TM30/PM1 Arsenic * 31.1 176 3 40.9 18.9 25.1 24 1 7.5 32.8 146 7 -05 mg/kg Arsenic 86.6 <0.5 mg/kg TM30/PM6 TM30/PM1 Barium [#] 43 106 32 106 41 44 29 36 23 <1 mg/kg TM30/PM6 Barium 37 -1 mg/kg 12 19 12 20 64 21 <01 TM30/PM1 Cadmium 11 06 0.8 mg/kg 28 TM30/PM6 Cadmium <01 mg/kg TM30/PM1 127 9 120.6 56.0 74 8 Chromium¹ 62.2 48.3 91.8 83.3 81.5 <0.5 mg/kg TM30/PM6 70 Chromium <0.5 mg/kg TM30/PM1 60 8 20 5 77 Copper* 95 80 66 20 <1 mg/kg TM30/PM6 Copper 293_{AA} <1 mg/kg TM30/PM1 17 131 218 18 214 83 24 447 92 l ead <5 mg/kg TM30/PM6 432 Lead <5 mg/kg TM30/PM1 0.2 1.1 0.7 0.1 < 0.1 <0.1 < 0.1 < 0.1 <0.1 Mercurv 0.6 mg/kg <0.1 TM30/PM6 Mercurv <0.1 mg/kg 7.1 TM30/PM1 11.5 5.0 8.8 1.0 1.7 3.2 Molybdenum [#] 6.5 14.4 <0.1 mg/kg TM30/PM6 Molvbdenum 4.8 <0.1 mg/kg TM30/PM1 22.3 27.7 16.0 18.3 30.5 50.1 Nickelⁱ 24.7 4.3 24.5 <0.7 mg/kg Nickel 9.1 <0.7 TM30/PM6 mg/kg <1 <1 <1 2 6 9 TM30/PM1 Selenium 1 1 <1 mg/kg <1 Selenium TM30/PM6 <1 <1 mg/kg Zinc * 521 309 830 332 314 79 91 1726 437 TM30/PM1 <5 mg/kg Zinc 1073 <5 mg/kg TM30/PM6

Client Name: Reference: Location:

Contact:

AECOM

City Block 2 & 7

Brian Duggan

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

J E Job No. 15/8159 15/8407 15/8407 15/8407 15/9506 15/10240 15/8159 15/8159 15/9992 15/10042 J E Sample No 58-60 61-63 70-72 25-27 31-33 34-36 13-15 1-4 1-4 1-4 TP205 BH14-4.0-5.0 Sample ID TP205 TP208 TP204 TP209 BH9 TP209 BH12 BH10 3.00-4.00 3 30-4 00 2 70-3 70 Depth 4 00-4 30 2 80-3 70 3 70-4 00 4 00-5 00 4m - 5m 4 0-5 0 Please see attached notes for all abbreviations and acronyms COC No / misc Containers VJT VJT V.IT V.IT V.IT V.IT V.IT VJT VJT V.IT Sample Date 27/05/2015 27/05/2015 29/05/2015 04/06/2015 04/06/2015 04/06/2015 30/06/2015 09/07/2015 10/07/2015 13/07/2015 Sample Type Soil Soil Soi Soil Soil Soil Soil Soil Soil Soil Batch Number 1 1 1 1 1 1 1 1 Method LOD/LOR Units No. Date of Receipt 03/06/2015 03/06/2015 03/06/2015 08/06/2015 08/06/2015 08/06/2015 02/07/2015 13/07/2015 14/07/2015 17/07/2015 PAH MS Naphthalene [#] <0.04 <0.04 <0.04 <0.04 <0.04 0.34 <0.04 <0.04 <0.04 <0.04 <0.04 mg/kg TMA/PM8 TM4/PM8 Acenaphthylene -0.03 -0.03 -0.03 -0.03 -0.03 0.12 -0.03 -0.03 -0.03 -0.03 -0.03 mg/kg Acenaphthene # ~0.05 ~0.05 ~0.05 <0.05 <0.05 0.12 <0.05 ~0.05 ~0.05 ~0.05 -0.05 mg/kg TM4/PM8 Fluorene * -0.04 -0.04 0.05 -0.04 -0.04 0.16 -0.04 -0.04 -0.04 -0.04 -0.04 mg/kg TM4/PM8 Phenanthrene¹ < 0.03 0.05 0 47 0.39 0.25 2 93 0.07 0.06 -0.03 -0.03 -0.03 mg/kg TM4/PM8 TM4/PM8 Anthracene ¹ <0.04 < 0.040.09 0 14 0.07 0 42 < 0.04<0.04 < 0.04< 0.04<0.04 mg/kg TM4/PM8 Fluoranthene <0.03 0.05 0.51 0.33 0.25 2 87 0.06 0.04 <0.03 <0.03 <0.03 mg/kg TM4/PM8 Pyrene* <0.03 0.04 0.40 0.29 0.16 1 90 0.05 <0.03 <0.03 <0.03 <0.03 mg/kg Benzo(a)anthracene 0.07 <0.06 0.34 0.24 0 14 1 06 <0.06 <0.06 <0.06 <0.06 <0.06 mg/kg TM4/PM8 Chrysene[#] 0.06 0.04 0.31 0.26 0 14 1 47 0.03 <0.02 <0.02 0.03 <0.02 mg/kg TM4/PM8 <0.07 TM4/PM8 Benzo(bk)fluoranthene # 0.17 0.13 0.43 0.25 0.19 1.81 < 0.07 < 0.07 < 0.07 < 0.07 mg/kg TM4/PM8 Benzo(a)pyrene [#] 0.09 0.06 0.25 0.16 0.11 0.87 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 mg/kg TM4/PM8 Indeno(123cd)pyrene 0.09 0.07 0.20 0.10 0.07 0.66 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 mg/kg TM4/PM8 Dibenzo(ah)anthracene 0.05 < 0.04 0.05 < 0.04 < 0.04 0.19 < 0.04 < 0.04 < 0.04 0.08 < 0.04 mg/kg TM4/PM8 0.12 0.09 0.20 0.08 0.08 0.70 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 Benzo(ghi)perylene [#] ma/ka TM4/PM8 Coronene < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 0.10 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 ma/ka TM4/PM8 PAH 6 Total 0.47 0.40 0.92 0.70 6.91 <0.22 <0.22 <0.22 <0.22 <0.22 1.59 ma/ka PAH 17 Total TM4/PM8 0.65 < 0.64 3.30 2.24 1.46 15.72 < 0.64 <0.64 < 0.64 < 0.64 < 0.64 ma/ka TM4/PM8 Benzo(b)fluoranthene 0.12 0.09 < 0.05 <0.05 <0.05 < 0.05 < 0.05 0.31 0.18 0.14 1.30 mg/kg <0.02 TM4/PM8 Benzo(k)fluoranthene 0.05 0.04 0.12 0.07 0.05 0.51 < 0.02 <0.02 <0.02 <0.02 mg/kg TM4/PM8 Benzo(j)fluoranthene mg/kg <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 PAH Surrogate % Recovery 109 127 108 105 97 107 TM4/PM8 120 108 114 106 <0 % Methyl Tertiary Butyl Ether # <2 <2 <2 <2 <2 ug/kg TM15/PM10 Benzene ⁱ <3 <3 <3 8 <3 ug/kg TM15/PM1 Toluene [#] <3 <3 9 <3 <3 ug/kg TM15/PM1 TM15/PM1 Ethylbenzene * <3 <3 <3 <3 <3 ug/kg p/m-Xylene <5 <5 <5 <5 <5 ug/kg TM15/PM1 TM15/PM1 o-Xylene <3 <3 <3 <3 <3 ug/kg TM15/PM1 Surrogate Recovery Toluene D8 112 101 81 103 <0 % TM15/PM1 ogate Recovery 4-Bromofluorobenze 129 105 112 110 <0 % --<30 <30 262 75 386 293 <30 <30 136 <30 <30 TM5/PM8 EPH (C8-C40) # mg/kg C8-C40 Mineral Oil (Calculation) - Rilta <30 82 <30 <30 <30 <30 <30 <30 <30 TM5/PM8 <30 <30 mg/kg

Client Name: Reference: Location:

Contact:

AECOM

City Block 2 & 7

Brian Duggan

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

15/8407 15/8407 J E Job No. 15/8159 15/8159 15/8159 15/8407 15/9506 15/9992 15/10042 15/10240 J E Sample No 58-60 61-63 70-72 25-27 31-33 34-36 13-15 1-4 1-4 1-4 TP205 TP205 BH14-4.0-5.0 Sample ID TP208 TP204 TP209 TP209 BH9 BH12 BH10 2 70-3 70 Depth 3.00-4.00 4 00-4 30 2 80-3 70 3 30-4 00 3 70-4 00 4 00-5 00 4m - 5m 4 0-5 0 Please see attached notes for all abbreviations and acronyms COC No / misc Containers VJT VJT VJT V.IT V.IT V.IT VJT VJT VJT VJT Sample Date 27/05/2015 27/05/2015 29/05/2015 04/06/2015 04/06/2015 04/06/2015 30/06/2015 09/07/2015 10/07/2015 13/07/2015 Sample Type Soil Soil Soi Soil Soil Soil Soil Soil Soil Soil Batch Number 1 1 1 1 1 1 1 Method LOD/LOR Units No. Date of Receipt 03/06/2015 03/06/2015 03/06/2015 08/06/2015 08/06/2015 08/06/2015 02/07/2015 13/07/2015 14/07/2015 17/07/2015 TPH CWG Aliphatics >C5-C6# -01 -01 -01 -01 <0.5_{AA} -01 -01 -01 -01 -01 -01 mg/kg TM36/PM1 >C6-C8[#] -01 -01 -01 -01 <0.5_{AA} -01 -01 -01 -01 -01 -01 mg/kg TM36/PM1 C8-C10 TM36/PM1 -01 -01 -01 -01 <0.5_{AA} -01 -01 -01 -01 -01 -01 mg/kg >C10-C12 -02 -02 -02 -02 -02 -02 -02 -02 <0.2 -02 -02 mg/kg TM5/PM16 TM5/PM16 >C12-C16* <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 mg/kg TM5/PM16 >C16-C21* <7 <7 46 <7 <7 <7 <7 <7 <7 <7 <7 mg/kg TM5/PM16 >C21-C35* <7 <7 29 <7 16 <7 <7 <7 <7 <7 <7 mg/kg TM5/PM16 >C35-C40* <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 mg/kg Total aliphatics C5-40 <26 <26 75 <26 <26 <26 <26 <26 <26 <26 <26 mg/kg >C6-C10 TM36/PM12 <0.1 < 0.1 < 0.1 < 0.1 < 0.1 <0.5_{AA} < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 mg/kg >C10-C25 TM5/PM16 <10 <10 47 <10 18 <10 <10 <10 <10 <10 <10 mg/kg TM5/PM16 >C25-C35 <10 <10 20 <10 <10 <10 <10 <10 <10 <10 <10 mg/kg Aromatics >C5-EC7 TM36/PM12 < 0.1 <0.1 < 0.1 < 0.1 <0.1 < 0.1 <0.1 < 0.1 <0.1 <0.1 ma/ka <0.5 >EC7-EC8 TM36/PM1; <0.1 <0.1 <0.1 <0.1 < 0.1 < 0.1 < 0.1 <0.5_{AA} < 0.1 < 0.1 < 0.1 ma/ka TM36/PM1: >EC8-EC10⁴ <0.1 <0.1 <0.1 <0.1 < 0.1 < 0.1 < 0.1 <0.5_{AA} < 0.1 < 0.1 < 0.1 mg/kg >EC10-EC12 TM5/PM16 < 0.2 <0.2 <0.2 < 0.2 <0.2 <0.2 < 0.2 <0.2 <0.2 <0.2 <0.2 ma/ka EC12-EC16 TM5/PM16 <4 <4 <4 <4 <4 <4 <4 <4 <4 mg/kg 5 EC16-EC21 <7 117 TM5/PM16 <7 <7 <7 44 <7 <7 <7 <7 <7 mg/kg EC21-EC35 TM5/PM16 <7 <7 247 <7 49 131 <7 <7 <7 <7 mg/kg <7 EC35-EC40 TM5/PM16 <7 <7 50 <7 15 46 <7 <7 <7 <7 mg/kg <7 Total aromatics C5-40 <26 <26 423 <26 226 <26 <26 64 <26 <26 <26 mg/kg otal aliphatics and aromatics(C5-40) <52 <52 498 <52 64 226 <52 <52 <52 <52 <52 mg/kg >EC6-EC10 <0.1 <0.1 <0.1 <0.1 <0.5_{AA} <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 mg/kg TM36/PM1: EC10-EC25 <10 <10 175 <10 <10 82 <10 <10 <10 <10 <10 mg/kg TM5/PM16 >EC25-EC35 <10 <10 200 <10 49 106 <10 <10 <10 <10 <10 mg/kg TM5/PM16 MTBE # TM31/PM12 <5 <5 <5 <5 <25_{AA} <5 <5 ug/kg TM31/PM1: Benzene # <5 <5 23 <5 <25**AA** <5 <5 ug/kg TM31/PM1: Foluene [#] <5 <5 12 <5 <25_{AA} <5 <5 ug/kg <5 <5 <5 <5 TM31/PM1: Ethylbenzene # <5 <25**AA** <5 ug/kg <5 <5 <5 <5 <25**AA** <5 TM31/PM1: m/p-Xylene # <5 ug/kg <5 <5 <5 <5 TM31/PM12 o-Xylene * <5 <25_{AA} <5 ug/kg <5 <5 <5 TM17/PM8 PCB 28 # <5 <5 <5 <5 9 <5 <5 <5 ug/kg <5 <5 <5 <5 <5 <5 <5 TM17/PM8 PCB 52# <5 <5 <5 <5 ug/kg PCB 101 # <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 TM17/PM8 <5 ug/kg PCB 118[#] <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 TM17/PM8 <5 ug/kg PCB 138 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 TM17/PM8 <5 ug/kg PCB 153* <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 ug/kg TM17/PM8 PCB 180 # <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 ug/kg TM17/PM8 Total 7 PCBs[#] <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 <35 ug/kg TM17/PM8

Client Name: Reference: Location:

Contact:

AECOM

City Block 2 & 7

Brian Duggan

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

J E Job No. 15/8159 15/8159 15/8159 15/8407 15/8407 15/8407 15/9506 15/9992 15/10042 15/10240 J E Sample No 58-60 61-63 70-72 25-27 31-33 34-36 13-15 1-4 1-4 1-4 Sample ID TP205 TP205 TP208 TP204 BH14-4.0-5.0 TP209 TP209 BH9 BH12 BH10 3.00-4.00 2.70-3.70 4 00-4 30 2 80-3 70 3 30-4 00 3.70-4.00 4.00-5.00 Depth 4m - 5m 4 0-5 0 Please see attached notes for all abbreviations and acronyms COC No / misc Containers VJT VJT VJT VJT V.IT VJT VJT VJT VJT VJT Sample Date 27/05/2015 27/05/2015 29/05/2015 04/06/2015 04/06/2015 04/06/2015 30/06/2015 09/07/2015 10/07/2015 13/07/2015 Sample Type Soil Soil Soil Soi Soil Soil Soil Soil Soil Soil Batch Number 1 1 1 1 1 1 1 1 1 1 Method LOD/LOR Units No. Date of Receipt 03/06/2015 03/06/2015 03/06/2015 08/06/2015 08/06/2015 08/06/2015 02/07/2015 13/07/2015 14/07/2015 17/07/2015 PM4/PM0 Natural Moisture Content 26.0 327 176 30.6 21.3 8.5 48.7 30.4 24.5 <01 % Natural Moisture Content 178 <0.1 % PM4/PM0 Moisture Content 20.6 24 7 176 79 PM4/PM0 15.0 234 32.8 23.3 19.7 < 0.1 % TM38/PM2 Hexavalent Chromium # -03 < 0.3 05 -03 -03 -03 -03 -03 -03 -03 -03 mg/kg NONE/NON Chromium III 127.9 61.7 120.6 48.3 91.8 56.0 83.3 81.5 74.8 < 0.5 mg/kg NONE/NONE 70 Chromium III <0.5 mg/kg TM21/PM24 Total Organic Carbon # NDP 1 98 3 07 0.90 3 4 4 1 4 1 0.29 1 72 0.80 0 70 <0.02 % TM22/PM0 36 NDP 33 <10 49 <10 % Loss on Ignition[#] 60 15 61 41 43 TM73/PM1 8.25 7.61 nH[‡] 7.70 7.63 8.12 6.80 8.15 7.88 8.04 8.00 < 0.01 pH units NONE/PM17 0.1242 0.119 0.1097 0.1109 0.1311 0.1241 0.0964 0.1604 0.1262 0.1111 Mass of raw test portion kg NONE/PM1 0.09 Mass of dried test portion 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 kg

Client Name:
Reference:
Location:
Contact:

AECOM

City Block 2 & 7 Brian Duggan

Report : Solid

J E Job No.	15/10240	15/10536										
J E Sample No.	5-8	1-4										
Sample ID	BH11	BH13_4-5M										
Denth		4050										
Depth		4.0-5.0								Please se	e attached no	otes for all
COC No / misc										abbievi		<i>x</i> onymo
Containers	VJT	VJT										
Sample Date	15/07/2015	21/07/2015										
Sample Type	Soil	Soil										
Batah Numbar	4	1										
Baten Number										LOD/LOR	Units	Method No.
Date of Receipt	17/07/2015	24/07/2015				_			_			
Antimony	4	2								<1	mg/kg	TM30/PM15
Antimony	-	-								<1	mg/kg	TM30/PM62
Arsenic*	264.2 _{AA}	14.2								<0.5	mg/kg	TM30/PM15
Arsenic	-	-								<0.5	mg/kg	TM30/PM62
Barium "	31	37								<1	mg/kg	TM30/PM15
Barium	-	-								<1	mg/kg	TM30/PM62
Cadmium	0.8	0.4								<0.1	mg/kg	TM30/PM62
Chromium [#]	72.9	66.3								<0.1	ma/ka	TM30/PM15
Chromium	-	-								<0.5	ma/ka	TM30/PM62
Copper [#]	71	45								<1	ma/ka	TM30/PM15
Copper	-	-								<1	ma/ka	TM30/PM62
Lead [#]	43	49								<5	mg/kg	TM30/PM15
Lead	-	-								<5	mg/kg	TM30/PM62
Mercury #	0.8	<0.1								<0.1	mg/kg	TM30/PM15
Mercury	-	-								<0.1	mg/kg	TM30/PM62
Molybdenum [#]	6.7	4.8								<0.1	mg/kg	TM30/PM15
Molybdenum	-	-								<0.1	mg/kg	TM30/PM62
Nickel [#]	14.6	25.9								<0.7	mg/kg	TM30/PM15
Nickel	-	-								<0.7	mg/kg	TM30/PM62
Selenium [#]	1	1								<1	mg/kg	TM30/PM15
Selenium	-	-								<1	mg/kg	TM30/PM62
Zinc [#]	40	155								<5	mg/kg	TM30/PM15
Zinc	-	-								<5	mg/kg	TM30/PM62
		1		1						1	ł	1 1

Client Name:
Reference:
Location:
Contact:

AECOM

City Block 2 & 7 Brian Duggan Report : Solid

J E Job No.	15/10240	15/10536										
J E Sample No.	5-8	1-4										
Sample ID	BH11	BH13_4-5M										
Depth		4.0-5.0					Please se abbrevi	Please see attached notes for all				
COC No / misc												
Containers	VJT	VJT										
Sample Date	15/07/2015	21/07/2015										
Sample Type	Soil	Soil										
Batch Number	1	1							Method			
Date of Receipt	17/07/2015	24/07/2015					LOD/LOR	Units	No.			
PAH MS												
Naphthalene [#]	<0.04	<0.04					<0.04	mg/kg	TM4/PM8			
Acenaphthylene	< 0.03	<0.03					< 0.03	mg/kg	TM4/PM8			
Acenaphthene #	<0.05	<0.05					<0.05	mg/kg	TM4/PM8			
Fluorene [#]	<0.04	<0.04					<0.04	mg/kg	TM4/PM8			
Phenanthrene [#]	<0.03	<0.03					<0.03	mg/kg	TM4/PM8			
Anthracene #	<0.04	<0.04					<0.04	mg/kg	TM4/PM8			
Fluoranthene [#]	<0.03	<0.03					<0.03	mg/kg	TM4/PM8			
Pvrene #	<0.03	<0.03					<0.03	mg/kg	TM4/PM8			
Benzo(a)anthracene #	<0.06	<0.06					<0.06	mg/kg	TM4/PM8			
Chrysene [#]	<0.02	<0.02					<0.02	ma/ka	TM4/PM8			
Benzo(bk)fluoranthene #	<0.07	<0.07					<0.07	mg/kg	TM4/PM8			
Benzo(a)pvrene [#]	<0.04	<0.04					<0.04	mg/kg	TM4/PM8			
Indeno(123cd)pyrene [#]	< 0.04	< 0.04					<0.04	ma/ka	TM4/PM8			
Dibenzo(ah)anthracene #	0.05	< 0.04					<0.04	ma/ka	TM4/PM8			
Benzo(ahi)pervlene [#]	< 0.04	<0.04					<0.04	mg/kg	TM4/PM8			
Coronene	<0.04	<0.04					<0.04	mg/kg	TM4/PM8			
PAH 6 Total [#]	<0.22	<0.22					<0.22	ma/ka	TM4/PM8			
PAH 17 Total	<0.64	<0.64					<0.64	ma/ka	TM4/PM8			
Benzo(b)fluoranthene	<0.05	<0.05					<0.05	mg/kg	TM4/PM8			
Benzo(k)fluoranthene	<0.02	<0.02					<0.02	mg/kg	TM4/PM8			
Benzo(j)fluoranthene	<1	<1					<1	mg/kg	TM4/PM8			
PAH Surrogate % Recovery	102	113					<0	%	TM4/PM8			
Methyl Tertiary Butyl Ether #	<2	-					<2	ug/kg	TM15/PM10			
Benzene [#]	5	-					<3	ug/kg	TM15/PM10			
Toluene #	<3	-					<3	ug/kg	TM15/PM10			
Ethylbenzene [#]	<3	-					<3	ug/kg	TM15/PM10			
p/m-Xylene [#]	<5	-					<5	ug/kg	TM15/PM10			
o-Xylene#	<3	-					<3	ug/kg	TM15/PM10			
Surrogate Recovery Toluene D8	101	-					<0	%	TM15/PM10			
Surrogate Recovery 4-Bromofluorobenzene	106	-					<0	%	TM15/PM10			
EPH (C8-C40) #	<30	<30					<30	mg/kg	TM5/PM8			
C8-C40 Mineral Oil (Calculation) - Rilta	<30	<30					<30	mg/kg	TM5/PM8			

Client Name:
Reference:
Location:
Contact:

AECOM

City Block 2 & 7 Brian Duggan Report : Solid

J E Job No.	15/10240	15/10536					1		
J E Sample No.	5-8	1-4					1		
Sample ID	BH11	BH13_4-5M							
Depth		4 0-5 0					1		
COC No / misc		4.0-3.0					Please se abbrevi	e attached no ations and ac	otes for all pronyms
Containara	\/ I T)/ IT					1		
Containers	VJI	VJI					l		
Sample Date	15/07/2015	21/07/2015					l		
Sample Type	Soil	Soil							
Batch Number	1	1						Linite	Method
Date of Receipt	17/07/2015	24/07/2015					LOD/LOR	Units	No.
TPH CWG									
Aliphatics									
>C5-C6 [#]	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>C6-C8#	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>C8-C10	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>C10-C12 [#]	<0.2	<0.2					<0.2	mg/kg	TM5/PM16
>C12-C16 [#]	<4	<4					<4	mg/kg	TM5/PM16
>C16-C21 #	<7	<7					<7	mg/kg	TM5/PM16
>C21-C35#	<7	<7					<7	mg/kg	TM5/PM16
>C35-C40#	<7	<7					<7	mg/kg	TM5/PM16
Total aliphatics C5-40	<26	<26					<26	mg/kg	TM5/TM36/PM12/PM16
>C6-C10	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>C10-C25	<10	<10					<10	mg/kg	TM5/PM16
>C25-C35	<10	<10					<10	mg/kg	TM5/PM16
Aromatics	-0.1	-0.1					-0.1	malka	TM26/DM42
>03-007	<0.1	<0.1					<0.1	mg/kg	TM26/PM12
>EC9 EC10#	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>EC10-EC12	<0.1	<0.1					<0.1	mg/kg	TM5/PM16
>EC12-EC16	<4	<4					<4	mg/kg	TM5/PM16
>EC16-EC21	<7	<7					<7	mg/kg	TM5/PM16
>EC21-EC35	<7	<7					<7	mg/kg	TM5/PM16
>EC35-EC40	<7	<7					<7	mg/kg	TM5/PM16
Total aromatics C5-40	<26	<26					<26	mg/kg	TM5/TM36/PM12/PM16
Total aliphatics and aromatics(C5-40)	<52	<52					<52	mg/kg	TM5/TM36/PM12/PM16
>EC6-EC10	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>EC10-EC25	<10	<10					<10	mg/kg	TM5/PM16
>EC25-EC35	<10	<10					<10	mg/kg	TM5/PM16
MTBE [#]	-	<5					<5	ug/kg	TM31/PM12
Benzene *	-	<5					<5	ug/kg	TM31/PM12
Toluene "	-	<5					<5	ug/kg	TM31/PM12
Ethylbenzene"	-	<5					<5	ug/kg	TM31/PM12
m/p-Xylene	-	<5					<5	ug/kg	TM31/PM12
0-Xylene	-	<0					<0	ug/kg	110131/F10112
PCB 28 #	<5	<5					<5	ug/kg	TM17/PM8
PCB 52 [#]	<5	<5					<5	ug/ka	TM17/PM8
PCB 101 #	<5	<5					<5	ug/ka	TM17/PM8
PCB 118 [#]	<5	<5					<5	ug/kg	TM17/PM8
PCB 138 [#]	<5	<5					<5	ug/kg	TM17/PM8
PCB 153 [#]	<5	<5					<5	ug/kg	TM17/PM8
PCB 180 [#]	<5	<5					<5	ug/kg	TM17/PM8
Total 7 PCBs [#]	<35	<35					<35	uq/kq	TM17/PM8

Client Name:
Reference:
Location:
Contact:

AECOM

City Block 2 & 7 Brian Duggan Report : Solid

J E Job No.	15/10240	15/10536											
J E Sample No.	5-8	1-4											
Sample ID	BH11	BH13_4-5M											
Depth		4.0-5.0									Disses		
COC No / misc											Please se abbrevia	e attached no ations and ac	otes for all cronyms
Containers	VJT	VJT											
Sample Date	15/07/2015	21/07/2015											
Sample Type	Soil	Soil											
Sample Type	301	301											
Batch Number	1	1									LOD/LOR	Units	Method No.
Date of Receipt	17/07/2015	24/07/2015											
Natural Moisture Content	25.5	33.1									<0.1	%	PM4/PM0
Natural Moisture Content	-	-									<0.1	%	PM4/PM0
Moisture Content	20.3	24.9									<0.1	%	PM4/PM0
Hexavalent Chromium #	0.4	<03									<03	ma/ka	TM38/PM20
Chromium III	72.5	66.3									<0.5	mg/kg	NONE/NONE
Chromium III	-	-									<0.5	ma/ka	NONE/NONE
												-99	
Total Organic Carbon #	0.54	0.86									<0.02	%	TM21/PM24
Loss on Ignition [#]	2.6	3.6									<1.0	%	TM22/PM0
рН#	7.42	7.91									<0.01	pH units	TM73/PM11
Mass of raw test portion	0.1147	0.125										kg	NONE/PM17
Mass of dried test portion	0.09	0.09										kg	NONE/PM17
			1	1	1	1	L	1	1	1	1 1		

Client Name: Reference: Location:

Contact:

AECOM

City Block 2 & 7

Brian Duggan

Report : CEN 10:1 1 Batch

J E Job No.	15/8073	15/8073	15/8073	15/8073	15/8073	15/8159	15/8159	15/8159	15/8159	15/8159					
J E Sample No.	7-9	16-18	27-29	30-32	42-44	22-24	25-27	34-36	37-39	46-48					
Sample ID	TP206	TP207	TP210	TP210	TP211	TP201	TP201	TP202	TP202	TP203					
Depth	2.5-3.5	2.3-3.6	2.3-3.5	3.5-4.2	3.0-4.0	2.70-3.80	3.80-4.50	2.20-3.40	3.40-3.70	3.90-4.10	Please se	Please see attached notes for all			
COC No / misc											abbrevi	abbreviations and acronyms			
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT					
Sample Date	28/05/2015	28/05/2015	28/05/2015	28/05/2015	28/05/2015	29/05/2015	29/05/2015	29/05/2015	29/05/2015	20/05/2015					
Sample Bate	20/03/2013	20/03/2013	20/03/2013	20/03/2013	20/03/2013	23/03/2013	23/03/2013	23/03/2013	23/03/2013	23/03/2013					
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil					
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method		
Date of Receipt	01/06/2015	01/06/2015	01/06/2015	01/06/2015	01/06/2015	03/06/2015	03/06/2015	03/06/2015	03/06/2015	03/06/2015			NO.		
Dissolved Antimony (A10) #	0.09	<0.02	0.36	0.06	0.08	<0.02	<0.02	0.07	0.08	<0.02	<0.02	mg/kg	TM30/PM17		
Dissolved Arsenic (A10) #	0.223	0.093	0.225	0.169	1.522	0.115	0.028	0.426	0.263	5.500	<0.025	mg/kg	TM30/PM17		
Dissolved Barium (A10) #	0.28	0.27	0.25	0.03	0.03	0.21	0.70	0.35	0.28	0.17	<0.03	mg/kg	TM30/PM17		
Dissolved Cadmium (A10) #	<0.005	<0.005	<0.005	<0.005	0.010	<0.005	0.007	0.474	0.029	0.033	<0.005	mg/kg	TM30/PM17		
Dissolved Chromium (A10) #	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	mg/kg	TM30/PM17		
Dissolved Copper (A10)#	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	TM30/PM17		
Dissolved Lead (A10)*	<0.05	<0.05	<0.05	0.11	0.09	<0.05	0.54	4.01	0.18	0.05	<0.05	mg/kg	TM30/PM17		
Dissolved Molybdenum (A10) *	0.27	0.62	0.33	0.19	0.51	0.44	0.23	0.03	0.18	0.82	<0.02	mg/kg	TM30/PM17		
Dissolved Nickel (A10) *	0.15	<0.02	<0.02	<0.02	<0.02	0.03	<0.02	0.82	0.07	0.15	<0.02	mg/kg	TM30/PM17		
Dissolved Selenium (A10) "	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM30/PM17		
Dissolved Zinc (A10)	20.45	0.00	0.13	0.18	0.15	0.60	2.11	0.0004	0.0067	38.31	<0.03	mg/kg	TM61/DM29		
Mercury Dissolved by CVAF	0.0004	0.0029	0.0022	0.0005	0.0004	0.0007	0.0008	0.0004	0.0007	0.0021	<0.0001	ilig/kg	110101/F10130		
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ma/ka	TM26/PM0		
		4011		4011						10.1		mgmg	11120/1110		
Fluoride	<3	<3	4	<3	3	<3	<3	<3	<3	<3	<3	mg/kg	TM27/PM0		
Chloride	100	49	106	57	210	5	51	7	8	5	<3	mg/kg	TM27/PM0		
Sulphate	4535.7 _{AB}	832.2	1649.6 _{AA}	537.9	324.5	8568.5 _{AB}	940.9 _{AB}	15942.3 _{AC}	15975.7 _{AC}	15576.1 _{AC}	<0.5	mg/kg	TM27/PM0		
Mass of raw test portion	0.1167	0.1279	0.111	0.1029	0.1068	0.1253	0.1199	0.1219	0.1294	0.1254		kg	NONE/PM17		
Leachant Volume	0.873	0.862	0.879	0.887	0.883	0.865	0.87	0.868	0.86	0.865		I	NONE/PM17		
Eluate Volume	0.85	0.8	0.8	0.8	0.85	0.7	0.86	0.85	0.82	0.85		I	NONE/PM17		
Dissolved Organic Carbon @ pH 7	40	190	50	40	60	60	30	<20	<20	40	<20	mg/kg	TM60/PM0		
рН	6.60	8.12	8.00	8.00	7.92	7.54	7.70	7.07	7.48	5.89	<0.01	pH units	TM73/PM0		
Total Dissolved Solids *	6309	2509	3969	1630	1900	12404	2360	22712	19313	10543	<100	mg/kg	TM20/PM0		

Client Name: Reference: Location:

Contact:

AECOM

City Block 2 & 7

Brian Duggan

Report : CEN 10:1 1 Batch

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

J E Job No. 15/8159 15/8407 15/8407 15/8407 15/9506 15/9992 15/10240 15/8159 15/8159 15/10042 J E Sample No 58-60 61-63 70-72 25-27 31-33 34-36 13-15 1-4 1-4 1-4 TP205 TP205 BH14-4.0-5.0 Sample ID TP208 TP204 TP209 TP209 BH9 BH10 BH12 3.00-4.00 2 80-3 70 3 30-4 00 2 70-3 70 4 00-5 00 Depth 4 00-4 30 3 70-4 00 4m - 5m 4 0-5 0 Please see attached notes for all abbreviations and acronyms COC No / misc Containers VJT VJT V.IT V.IT V.IT V.IT V.IT VJT VJT V.IT Sample Date 27/05/2015 27/05/2015 29/05/2015 04/06/2015 04/06/2015 04/06/2015 30/06/2015 09/07/2015 10/07/2015 13/07/2015 Sample Type Soil Soil Soi Soil Soil Soil Soil Soil Soil Soil Batch Number 1 1 1 1 1 1 Method LOD/LOR Units No. Date of Receipt 03/06/2015 03/06/2015 03/06/2015 08/06/2015 08/06/2015 08/06/2015 02/07/2015 13/07/2015 14/07/2015 17/07/2015 TM30/PM1 Dissolved Antimony (A10) # < 0.02 0.25 0.07 1 66 0.04 0.12 <0.02 0.05 0.04 <0.02 <0.02 mg/kg Dissolved Arsenic (A10) # 0.093 0 100 0 215 0.322 0 226 0.080 0 406 <0.025 0.060 0 453 <0.025 mg/kg TM30/PM1 TM30/PM1 Dissolved Barium (A10) # -0.03 0.21 0 1 1 0.58 0.12 0 14 -0.03 -0.03 0.03 0.04 -0.03 mg/kg Dissolved Cadmium (A10) * ~0.005 ~0.005 ~0.005 ~0.005 ~0.005 ~0.005 ~0.005 ~0.005 ~0.005 ~0.005 ~0.005 mg/kg TM30/PM1 TM30/PM1 Dissolved Chromium (A10) # ~0.015 ~0.015 -0.015 ~0.015 ~0.015 -0.015 ~0.015 ~0.015 -0.015 0.020 -0.015 mg/kg TM30/PM1 Dissolved Copper (A10) # -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 mg/kg TM30/PM1 Dissolved Lead (A10) # <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 mg/kg TM30/PM1 Dissolved Molybdenum (A10) 0.20 0.05 0.68 1 77 1 04 0.30 0.03 0.35 0.38 0.41 <0.02 mg/kg TM30/PM1 <0.02 Dissolved Nickel (A10) * <0.02 <0.02 0.04 <0.02 <0.02 <0.02 <0.02 0.04 0.33 <0.02 mg/kg TM30/PM1 <0.03 Dissolved Selenium (A10) * <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 0 15 <0.03 mg/kg TM30/PM1 Dissolved Zinc (A10) 0.24 3 38 0.04 3 4 3 <0.03 0.15 0.04 <0.03 0 12 0 1 1 <0.03 mg/kg 0.0053 0.0156 0.0085 0.0011 0.0003 <0.0001 < 0.0001 < 0.0001 TM61/PM3 Mercury Dissolved by CVAF # <0.0001 < 0.0001 < 0.0001 mg/kg TM26/PM0 < 0.1 < 0.1 <0.1 Phenol < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 mg/kg 3 TM27/PM0 Fluoride <3 <3 <3 <3 <3 <3 <3 8 <3 <3 ma/ka TM27/PM0 Chloride 20 71 65 9 40 60 27 ma/ka 5 6 5 <3 1850.8_{AB} 2243.2_{AB} 237.4 2335.3_{AA} 4682.7_{AA} TM27/PM0 Sulphate 363.0 643.3 121.0 634.2 465.6 <0.5 mg/kg 0.1242 0.119 0.1097 0.1109 0.1311 0.1241 0.0964 0.1604 0.1262 0.1111 NONE/PM1 Mass of raw test portion kg eachant Volume 0.866 0.881 0.879 0.859 0.866 0.893 0.829 0.878 NONE/PM1 0.871 0.864 T NONE/PM1 Eluate Volume 0.75 0.85 0.8 0.85 0.75 0.8 0.85 0.65 0.55 0.77 Т Dissolved Organic Carbon @ pH 7 50 30 110 40 200 40 30 40 70 30 <20 mg/kg TM60/PM0 7.92 7.47 8.12 7.15 8.19 7.93 8.27 7.84 7.89 7.81 <0.01 pH units TM73/PM0 Total Dissolved Solids # 3600 3238 1760 1350 2239 4421 800 2269 2400 6747 <100 mg/kg TM20/PM0

Client Name:
Reference:
Location:
Contact:

AECOM

City Block 2 & 7 Brian Duggan

Report : CEN 10:1 1 Batch

J E Job No.	15/10240	15/10536					1					
J E Sample No.	5-8	1-4					1					
Sample ID	BH11	BH13_4-5M										
Depth		4.0-5.0										
COC No / misc							Please se abbrevia	Please see attached notes for a abbreviations and acronyms				
Containers	VIT	VIT					1					
Comula Data	45/07/0045	04/07/0045					1					
Sample Date	15/07/2015	21/07/2015					l					
Sample Type	Soil	Soil										
Batch Number	1	1						Units	Method			
Date of Receipt	17/07/2015	24/07/2015					LOBILON	Office	No.			
Dissolved Antimony (A10) #	0.22	0.06					<0.02	mg/kg	TM30/PM17			
Dissolved Arsenic (A10)#	6.446	<0.025					<0.025	mg/kg	TM30/PM17			
Dissolved Barium (A10) #	0.08	0.06					<0.03	mg/kg	TM30/PM17			
Dissolved Cadmium (A10) #	0.008	<0.005					<0.005	mg/kg	TM30/PM17			
Dissolved Chromium (A10) #	<0.015	<0.015					<0.015	mg/kg	TM30/PM17			
Dissolved Copper (A10)#	<0.07	<0.07					<0.07	mg/kg	TM30/PM17			
Dissolved Lead (A10) #	<0.05	<0.05					<0.05	mg/kg	TM30/PM17			
Dissolved Molybdenum (A10) #	0.85	0.35					<0.02	mg/kg	TM30/PM17			
Dissolved Nickel (A10) #	<0.02	<0.02					<0.02	mg/kg	TM30/PM17			
Dissolved Selenium (A10)#	0.07	<0.03					<0.03	mg/kg	TM30/PM17			
Dissolved Zinc (A10) #	0.06	0.05					<0.03	mg/kg	TM30/PM17			
Mercury Dissolved by CVAF #	0.0049	<0.0001					<0.0001	mg/kg	TM61/PM38			
Phenol	<0.1	<0.1					<0.1	mg/kg	TM26/PM0			
Fluoride	<3	<3					<3	mg/kg	TM27/PM0			
Chloride	4	50					<3	mg/kg	TM27/PM0			
Sulphate	9030.8 _{AB}	516.5					<0.5	mg/kg	TM27/PM0			
Mass of raw test portion	0.1147	0.125						kg	NONE/PM17			
Leachant Volume	0.876	0.865						I	NONE/PM17			
Eluate Volume	0.85	0.64						I	NONE/PM17			
Dissolved Organic Carbon @ pH 7	<20	100					<20	mg/kg	TM60/PM0			
рН	7.77	8.14					<0.01	pH units	TM73/PM0			
Total Dissolved Solids#	13113	2600					<100	mg/kg	TM20/PM0			

Client Name:
Reference:
Location:
Contact:

AECOM

City Block 2 & 7 Brian Duggan Report : Misc

J E Job No.	15/9992							
J E Sample No.	1-4							
Sample ID	BH9							
Depth	4m - 5m					Please se	e attached no	otes for all
COC No / misc						abbrevi	ations and ac	ronyms
Containers	VJT							
Sample Date	09/07/2015							
Sample Type	Soil							
Batch Number	1							Method
Date of Receipt	13/07/2015					LOD/LOR	Units	No.
Sample Temperature	8.8					<0.1	Degrees C	NONE/NONE

Client Name: Reference: Location: Contact:

City Block 2 & 7 Brian Duggan

AECOM

SVOC Report : Solid

LE Jah Na	45/0500	45/0000	45/40040	45/40040	45/40040	45/40500						
J E JOD NO.	13/9506	15/9992	15/10042	15/10240	15/10240	15/10536						
J E Sample No.	13-15	1-4	1-4	1-4	5-0	1-4						
Sample ID	BH14-4.0-5.0	BH9	BH12	BH10	BH11	BH13_4-5M						
Depth	4.00-5.00	4m - 5m	4.0-5.0			4.0-5.0				Please se	e attached n	otes for all
COC No / misc										abbrevia	ations and ac	cronyms
Containers	VJT	VJT	VJT	VJT	VJT	VJT						
Sample Date	30/06/2015	09/07/2015	10/07/2015	13/07/2015	15/07/2015	21/07/2015						
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil						
Batch Number	1	1	1	1	1	1				LOD/LOR	Units	Method
Date of Receipt	02/07/2015	13/07/2015	14/07/2015	17/07/2015	17/07/2015	24/07/2015						No.
SVOC MS												
Phenols												
2-Chlorophenol	<10	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
2-Methylphenol	<10	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
2-Nitrophenol	<10	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
2,4-Dichlorophenol	<10	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
2,4-Dimethylphenol	<10	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
2,4,5-Trichlorophenol	<10	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
2,4,6-Trichlorophenol	<10	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
4-Chloro-3-methylphenol	<10	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
4-Methylphenol	<10	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
4-Nitrophenol	<10	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
Pentachlorophenol	<10	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
Phenol	<10	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
PAHs	10	10	10	10	10	10				10	h	TMOTO
2-Chloronaphthalene	<10	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
2-Methylnaphthalene	<10	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
Phthalates	10	10	10	10	10	40				10		T1440/D140
Bis(2-ethylnexyl) phthalate	<10	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
Butylbenzyl phthalate	<10	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
Di-n-butyi phthalate	<10	<10	<10	<10	<10	<10				<10	ug/kg	TIVI16/PIVI8
Di-n-Octyl phthalate	<10	<10	<10	<10	<10	<10				<10	ug/kg	TIVI16/PIVI8
Diethyl phthalate	<10	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PIVI8
Dimethyl phthalate	<10	<10	<10	<10	<10	<10				<10	ug/kg	11/110/P1/18
	-10	-10	-10	-10	-10	-10				-10	ua/ka	
1,2-Dichlorobenzene	<10	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
	<10	<10	<10	<10	<10	<10				<10	ug/kg	TM16/DM9
	<10	<10	<10	<10	<10	<10				<10	ug/kg	TM16/DM9
2-Nitroaniline	<10	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
2 4-Dinitrotoluene	<10	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
2 6-Dinitrotoluene	<10	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
3-Nitroaniline	<10	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
4-Bromophenvlphenvlether	<10	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
4-Chloroaniline	<10	<10	<10	<10	<10	<10				<10	ua/ka	TM16/PM8
4-Chlorophenvlphenvlether	<10	<10	<10	<10	<10	<10				<10	ua/ka	TM16/PM8
4-Nitroaniline	<10	<10	<10	<10	<10	<10				<10	ua/ka	TM16/PM8
Azobenzene	<10	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
Bis(2-chloroethoxy)methane	<10	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
Bis(2-chloroethyl)ether	<10	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
Carbazole	<10	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
Dibenzofuran	<10	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
Hexachlorobenzene	<10	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
Hexachlorobutadiene	<10	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
Hexachlorocyclopentadiene	<10	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
Hexachloroethane	<10	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
Isophorone	<10	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
N-nitrosodi-n-propylamine	<10	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
Nitrobenzene	<10	<10	<10	<10	<10	<10				<10	ug/kg	TM16/PM8
	1	1	1	1	1	1	1	1				

Client Name:					
Reference:					
Location:					
Contact:					

City Block 2 & 7 Brian Duggan

AECOM

J F Job No.	15/9506	15/9992	15/10042	15/10240	15/10240	15/10536			1		
J E Sample No.	13-15	1-4	1-4	1-4	5-8	1-4					
	10 10				00						
Sample ID	BH14-4.0-5.0	BH9	BH12	BH10	BH11	BH13_4-5M					
Depth	4.00-5.00	4m - 5m	4.0-5.0			4.0-5.0			Please ser	e attached no	otes for all
COC No / misc									abbrevia	ations and ac	ronyms
Containers	VJT	VJT	VJT	VJT	VJT	VJT					
Sample Date	30/06/2015	09/07/2015	10/07/2015	13/07/2015	15/07/2015	21/07/2015					
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil					
Batch Number	1	1	1	1	1	1				Links	Method
Date of Receipt	02/07/2015	13/07/2015	14/07/2015	17/07/2015	17/07/2015	24/07/2015			LOD/LOR	Units	No.
VOC MS											
Dichlorodifluoromethane	<2	<2	<2	<2	<2	<2			<2	ug/kg	TM15/PM10
Methyl Tertiary Butyl Ether #	<2	<2	<2	<2	<2	<2			<2	ua/ka	TM15/PM10
Chloromethane [#]	<3	<3	<3	14	14	<3			<3	ua/ka	TM15/PM10
Vinyl Chloride	<2	<2	<2	12	11	<2			<2	ug/kg	TM15/PM10
Bromomethane	-1	-1	-1	-1	-1	-1				ug/kg	TM15/PM10
Chloroothana [#]	-2	-2	-2	16	14	-2			-2	ug/kg	TM15/PM10
Trichlorofluoromothono#	-2	-2	-2	10	4	< <u>2</u>			~2	ug/kg	TM15/PM10
		-6	-6	4	4	< <u>2</u>			< <u>2</u>	ug/kg	TM15/DM10
Disklasses (DOM)#	<0	<0	<0	<0	<0	<0			<0	ug/kg	TM15/FM10
Dicniorometnane (DCM)	</td <td><!--</td--><td><1</td><td><!--</td--><td><!--</td--><td><!--</td--><td></td><td></td><td><!--</td--><td>ug/kg</td><td>TM15/PM10</td></td></td></td></td></td>	</td <td><1</td> <td><!--</td--><td><!--</td--><td><!--</td--><td></td><td></td><td><!--</td--><td>ug/kg</td><td>TM15/PM10</td></td></td></td></td>	<1	</td <td><!--</td--><td><!--</td--><td></td><td></td><td><!--</td--><td>ug/kg</td><td>TM15/PM10</td></td></td></td>	</td <td><!--</td--><td></td><td></td><td><!--</td--><td>ug/kg</td><td>TM15/PM10</td></td></td>	</td <td></td> <td></td> <td><!--</td--><td>ug/kg</td><td>TM15/PM10</td></td>			</td <td>ug/kg</td> <td>TM15/PM10</td>	ug/kg	TM15/PM10
trans-1-2-Dichloroethene "	<3	<3	<3	8	8	<3			<3	ug/kg	TM15/PM10
1,1-Dichloroethane"	<3	<3	<3	9	8	<3			<3	ug/kg	TM15/PM10
cis-1-2-Dichloroethene *	<3	<3	<3	<3	<3	<3			<3	ug/kg	IM15/PM10
2,2-Dichloropropane	<4	<4	<4	<4	<4	<4			<4	ug/kg	TM15/PM10
Bromochloromethane #	<3	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
Chloroform #	<3	<3	<3	6	6	<3			<3	ug/kg	TM15/PM10
1,1,1-Trichloroethane #	<3	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
1,1-Dichloropropene #	<3	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
Carbon tetrachloride #	<4	<4	<4	<4	<4	<4			<4	ug/kg	TM15/PM10
1,2-Dichloroethane [#]	<4	<4	<4	<4	<4	<4			<4	ug/kg	TM15/PM10
Benzene [#]	<3	<3	<3	8	5	<3			<3	ug/kg	TM15/PM10
Trichloroethene (TCE) #	<3	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
1,2-Dichloropropane #	<6	<6	<6	<6	<6	<6			<6	ug/kg	TM15/PM10
Dibromomethane #	<3	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
Bromodichloromethane #	<3	<3	<3	<3	<3	<3			<3	ua/ka	TM15/PM10
cis-1-3-Dichloropropene	<4	<4	<4	<4	<4	<4			<4	ug/kg	TM15/PM10
Toluene #	<3	<3	9	<3	<3	<3			<3	ug/kg	TM15/PM10
trans-1-3-Dichloropropene	-3	-3	-3	-3	<3	-3			-3	ug/kg	TM15/PM10
1 1 2 Trichloroothono [#]	-3	-2	-3	-3	-2	-3			-2	ug/kg	TM15/PM10
T, 1, 2-1 richloroethane	<0	< 3	< 3	<0	< 3	<0			<0	ug/kg	TM15/FM10
t e Richler (PCE)	< 3	<3	<3	< 3	<3	< 3			<3	ug/kg	TIMITS/PIVITU
1,3-Dichloropropane	<3	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
Dibromochloromethane "	<3	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
1,2-Dibromoethane *	<3	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
Chlorobenzene *	<3	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
1,1,1,2-Tetrachloroethane	<3	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
Ethylbenzene #	<3	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
p/m-Xylene [#]	<5	<5	<5	<5	<5	<5			<5	ug/kg	TM15/PM10
o-Xylene [#]	<3	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
Styrene	<3	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
Bromoform	<3	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
lsopropylbenzene [#]	<3	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
1,1,2,2-Tetrachloroethane #	<3	<3	<3	<3	<3	<3			<3	ug/kg	TM15/PM10
Bromobenzene	<2	<2	<2	<2	<2	<2			<2	ug/kg	TM15/PM10
1,2,3-Trichloropropane #	<4	<4	<4	<4	<4	<4			<4	ug/kg	TM15/PM10
Propylbenzene [#]	<4	<4	<4	<4	<4	<4			<4	uq/ka	TM15/PM10
2-Chlorotoluene	<3	<3	<3	<3	<3	<3			<3	ua/ka	TM15/PM10
1.3.5-Trimethylbenzene #	<3	<3	<3	<3	<3	<3			<3	ua/ka	TM15/PM10
4-Chlorotoluene	-3	-3	-3	-3	-3	-3			-3	ug/kg	TM15/PM10
tert-Butylbenzono [#]	~5	~5	~5	~5	~5	~5			~5	ug/kg	TM15/PM10
1 2 4 Trimethylhonzone #	<5	<0	<5	<5 <6	<5	<5 <6			<0	ug/kg	TM15/DM10
n,2,4- mineuryidenzene	-4	-0	-4	<0 -4	<0	<0 -4			-4	ug/kg	TM15/PM10
sec-Butyibenzene	<4	<4	<4	<4	<4	<4			<4	ug/kg	TM15/PIVITO
4-isopropyltoluene "	<4	<4	<4	<4	<4	<4			<4	ug/Kg	TM15/PM10
1,3-Dichlorobenzene *	<4	<4	<4	<4	<4	<4			<4	ug/kg	TM15/PM10
1,4-Dichlorobenzene*	<4	<4	<4	<4	<4	<4			<4	ug/kg	IM15/PM10
n-Butylbenzene [#]	<4	<4	<4	<4	<4	<4			<4	ug/kg	TM15/PM10
1,2-Dichlorobenzene #	<4	<4	<4	<4	<4	<4			<4	ug/kg	TM15/PM10
1,2-Dibromo-3-chloropropane #	<4	<4	<4	<4	<4	<4			<4	ug/kg	TM15/PM10
1,2,4-Trichlorobenzene #	<7	<7	<7	<7	<7	<7			<7	ug/kg	TM15/PM10
Hexachlorobutadiene	<4	<4	<4	<4	<4	<4			<4	ug/kg	TM15/PM10
Naphthalene	<27	<27	<27	<27	<27	<27			<27	ug/kg	TM15/PM10
1,2,3-Trichlorobenzene #	<7	<7	<7	<7	<7	<7			<7	ug/kg	TM15/PM10
Surrogate Recovery Toluene D8	112	101	81	103	101	91			<0	%	TM15/PM10
Surragata Resource 4 Promofluorobanzona	120	105	112	110	106	90			-0	0/.	TM15/DM10

VOC Report :

Solid

EPH Interpretation Report

AECOM Client Name: Reference: Location: Contact:

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	EPH Interpretation
15/8073	1	TP206	2.5-3.5	7-9	No interpretation possible
15/8073	1	TP207	2.3-3.6	16-18	Possible PAHs and humics
15/8073	1	TP210	2.3-3.5	27-29	Possible PAHs/humics
15/8073	1	TP210	3.5-4.2	30-32	No interpretation possible
15/8073	1	TP211	3.0-4.0	42-44	No interpretation possible
15/8159	1	TP201	2.70-3.80	22-24	Possible PAHs and humics
15/8159	1	TP201	3.80-4.50	25-27	No interpretation possible
15/8159	1	TP202	2.20-3.40	34-36	PAHs
15/8159	1	TP202	3.40-3.70	37-39	Possible PAHs
15/8159	1	TP203	3.90-4.10	46-48	No interpretation possible
15/8159	1	TP205	3.00-4.00	58-60	No interpretation possible
15/8159	1	TP205	4.00-4.30	61-63	No interpretation possible
15/8159	1	TP208	2.80-3.70	70-72	Possble PAHs and humics
15/8407	1	TP204	3.30-4.00	25-27	Humic acids
15/8407	1	TP209	2.70-3.70	31-33	Humics and possible PAHs
15/8407	1	TP209	3.70-4.00	34-36	PAHs and humics
15/9506	1	BH14-4.0-5.0	4.00-5.00	13-15	No interpretation possible
15/9992	1	BH9	4m - 5m	1-4	No interpretation possible
15/10042	1	BH12	4.0-5.0	1-4	No interpretation possible
15/10240	1	BH10		1-4	No interpretation possible
15/10240	1	BH11		5-8	No interpretation possible
15/10536	1	BH13_4-5M	4.0-5.0	1-4	No interpretation possible

AECOM
City Block 2 & 7
Brian Duggan

Note:

Analysis was carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Samples are retained for not less than 6 months from the date of analysis unless specifically requested. Opinions lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Jones Environmental Laboratory consultant, Jones Environmental Laboratory cannot be responsible for inaccurate or unrepresentative sampling.

If asbestos fibres are reported at trace levels there will not be enough fibres to quantify and will be less than 0.001%.

Signed on behalf of Jones Environmental Laboratory:

Ryan Butterworth

Asbestos Team Leader

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
15/8073	1	TP206	2.5-3.5	8	06/06/2015	Mass of Dry Sample	49.5 (g)
					08/06/2015	General Description (Bulk Analysis)	Soil/Stone
					08/06/2015	Asbestos Containing Material	None
					08/06/2015	Asbestos Containing Material (2)	None
					08/06/2015	Asbestos Screen	NAD
					08/06/2015	Asbestos Screen (2)	NAD
					08/06/2015	Asbestos Level	NAD
15/8073	1	TP207	2.3-3.6	17	06/06/2015	Mass of Dry Sample	36.2 (g)
					08/06/2015	General Description (Bulk Analysis)	Soil/Stone
					08/06/2015	Asbestos Containing Material	None
					08/06/2015	Asbestos Containing Material (2)	None
					08/06/2015	Asbestos Screen	NAD
					08/06/2015	Asbestos Screen (2)	NAD
					08/06/2015	Asbestos Level	NAD
15/8073	1	TP210	2.3-3.5	28	06/06/2015	Mass of Dry Sample	42.5 (g)
					08/06/2015	General Description (Bulk Analysis)	Soil/Stone
					08/06/2015	Asbestos Containing Material	None
					08/06/2015	Asbestos Containing Material (2)	None
					08/06/2015	Asbestos Screen	NAD
					08/06/2015	Asbestos Screen (2)	NAD
					08/06/2015	Asbestos Level	NAD
15/8073	1	TP210	3.5-4.2	31	06/06/2015	Mass of Dry Sample	46.1 (g)
					08/06/2015	General Description (Bulk Analysis)	Soil/Stones/Veg
					08/06/2015	Asbestos Containing Material	None
					08/06/2015	Asbestos Containing Material (2)	None
					08/06/2015	Asbestos Screen	NAD
					08/06/2015	Asbestos Screen (2)	NAD
					08/06/2015	Asbestos Level	NAD
15/8073	1	TP211	3.0-4.0	43	06/06/2015	Mass of Dry Sample	50.7 (g)
					08/06/2015	General Description (Bulk Analysis)	Soil/Stones/Veg
					08/06/2015	Asbestos Containing Material	None
					08/06/2015	Asbestos Containing Material (2)	None
					08/06/2015	Asbestos Screen	NAD
					08/06/2015	Asbestos Screen (2)	NAD
					08/06/2015	Asbestos Level	NAD

Client Name: Reference: Location: AECOM

Contac	ι.		Dilan Du	yyan			
J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
15/8159	1	TP201	2.70-3.80	23	09/06/2015	Mass of Dry Sample	42.6 (g)
					09/06/2015	General Description (Bulk Analysis)	soil/stones
					09/06/2015	Asbestos Containing Material	None
					09/06/2015	Asbestos Containing Material (2)	None
					09/06/2015	Ashestos Screen	NAD
					09/06/2015	Ashestos Screen (2)	NAD
					00/06/2015		NAD
					03/00/2013		
15/0150	1	TP201	2 90 4 50	26	00/06/2015	Mass of Dry Sample	40.6 (c)
13/0139	1	11 201	3.00-4.30	20	00/06/2015	Concret Description (Bulk Analysis)	45.0 (g)
					09/00/2013	Ashestas Cantaining Material	Nee
					09/00/2015	Asbestos Containing Material (2)	None
					09/06/2015	Asbestos Containing Material (2)	None
					09/06/2015	Asbestos Screen	NAD
					09/06/2015	Asbestos Screen (2)	NAD
					09/06/2015	Asbestos Level	NAD
15/8159	1	TP202	2.20-3.40	35	09/06/2015	Mass of Dry Sample	44.0 (g)
					09/06/2015	General Description (Bulk Analysis)	Soil/Stones/Veg
					09/06/2015	Asbestos Containing Material	None
					09/06/2015	Asbestos Containing Material (2)	None
					09/06/2015	Asbestos Screen	NAD
					09/06/2015	Asbestos Screen (2)	NAD
					09/06/2015	Asbestos Level	NAD
15/8159	1	TP202	3.40-3.70	38	09/06/2015	Mass of Dry Sample	46.1 (g)
					09/06/2015	General Description (Bulk Analysis)	Soil/Stones/Veg
					09/06/2015	Asbestos Containing Material	None
					09/06/2015	Asbestos Containing Material (2)	None
					09/06/2015	Asbestos Screen	NAD
					09/06/2015	Asbestos Screen (2)	NAD
					09/06/2015	Asbestos Level	NAD
15/8159	1	TP203	3.90-4.10	47	09/06/2015	Mass of Dry Sample	44.7 (g)
					09/06/2015	General Description (Bulk Analysis)	soil/stones
					09/06/2015	Asbestos Containing Material	None
					09/06/2015	Asbestos Containing Material (2)	None
					09/06/2015	Asbestos Screen	NAD
					09/06/2015	Asbestos Screen (2)	NAD
					09/06/2015	Asbestos Level	NAD
15/8159	1	TP205	3.00-4.00	59	09/06/2015	Mass of Dry Sample	48.8 (g)
					09/06/2015	General Description (Bulk Analysis)	Soil/Stone
					09/06/2015	Asbestos Containing Material	None
					09/06/2015	Asbestos Containing Material (2)	None
					09/06/2015	Asbestos Screen	NAD
					09/06/2015	Asbestos Screen (2)	NAD
					09/06/2015	Asbestos Level	NAD
					55,55,2010		
15/8150	1	TP205	4 00-4 30	62	09/06/2015	Mass of Dry Sample	51 7 (g)
.0,0109		200	4.00-4.00	52	09/06/2015	General Description (Bulk Analysis)	Soil/Stope
					09/06/2015	Ashestos Containing Material	Fibre Bundles
					00/06/2015	Ashestos Screen	Chrysotile
					00/06/2015		
					09/00/2013	ASPESIOS LEVEL	

Client Name: Reference: Location: AECOM

Contac	t:		Brian Dug	ggan			
J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
15/8159	1	TP205	4.00-4.30	62	30/07/2015	Asbestos PCOM Quantification (Fibres)	<0.001 (mass %)
					30/07/2015	Asbestos Gravimetric & PCOM Total	<0.001 (mass %)
15/8159	1	TP208	2.80-3.70	71	09/06/2015	Mass of Dry Sample	42.0 (g)
					09/06/2015	General Description (Bulk Analysis)	soil-sand
					09/06/2015	Asbestos Containing Material	None
					09/06/2015	Asbestos Containing Material (2)	None
					09/06/2015	Asbestos Screen	NAD
					09/06/2015	Asbestos Screen (2)	NAD
					09/06/2015	Asbestos Level	NAD
15/8407	1	TP204	3.30-4.00	26	09/06/2015	Mass of Dry Sample	48.0 (g)
					10/06/2015	General Description (Bulk Analysis)	soil/stones
					10/06/2015	Asbestos Containing Material	None
					10/06/2015	Asbestos Containing Material (2)	None
					10/06/2015	Asbestos Screen	NAD
					10/06/2015	Asbestos Screen (2)	NAD
					10/06/2015	Asbestos Level	NAD
15/8407	1	TP209	2.70-3.70	32	09/06/2015	Mass of Dry Sample	42.8 (g)
					10/06/2015	General Description (Bulk Analysis)	soil/stones
					10/06/2015	Asbestos Containing Material	None
					10/06/2015	Asbestos Containing Material (2)	None
					10/06/2015	Asbestos Screen	NAD
					10/06/2015	Asbestos Screen (2)	NAD
					10/06/2015	Asbestos Level	NAD
15/8407	1	TP209	3.70-4.00	35	09/06/2015	Mass of Dry Sample	48.0 (g)
					10/06/2015	General Description (Bulk Analysis)	soil-stones
					10/06/2015	Asbestos Containing Material	None
					10/06/2015	Asbestos Containing Material (2)	None
					10/06/2015	Asbestos Screen	NAD
					10/06/2015	Asbestos Screen (2)	NAD
					10/06/2015	Asbestos Level	NAD
45/0500			4 00 5 00		00/07/0045	Mana at Dire Gammela	00.0 (-)
15/9506	1	БП14-4.0-3.0	4.00-5.00	14	02/07/2015	Mass of Dry Sample	62.2 (g)
					02/07/2015	Acheetee Containing Material	SolivStories
					02/07/2015	Asbestos Containing Material (2)	None
					02/07/2015	Asbestos Screen	NAD
					02/07/2015	Asbestos Screen (2)	NAD
					02/07/2015		NAD
					02/01/2010		
15/9992	1	BH9	4m - 5m	2	14/07/2015	Mass of Dry Sample	50.1 (g)
					14/07/2015	General Description (Bulk Analysis)	Soil/Clay/Stones
					14/07/2015	Asbestos Containing Material	None
					14/07/2015	Asbestos Containing Material (2)	None
					14/07/2015	Asbestos Screen	NAD
					14/07/2015	Asbestos Screen (2)	NAD
					14/07/2015	Asbestos Level	NAD
15/10042	1	BH12	4.0-5.0	2	14/07/2015	Mass of Dry Sample	42.3 (g)
					14/07/2015	General Description (Bulk Analysis)	soil-stones

Client Name: Reference: Location: AECOM

Contact	t:		Brian Dug	ggan			
J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
15/10042	1	BH12	4.0-5.0	2	14/07/2015	Asbestos Containing Material	None
					14/07/2015	Asbestos Containing Material (2)	None
					14/07/2015	Asbestos Screen	NAD
					14/07/2015	Asbestos Screen (2)	NAD
					14/07/2015	Asbestos Level	NAD
15/10240	1	BH10		2	18/07/2015	Mass of Dry Sample	41.6 (g)
					20/07/2015	General Description (Bulk Analysis)	soil-stones
					20/07/2015	Asbestos Containing Material	None
					20/07/2015	Asbestos Containing Material (2)	None
					20/07/2015	Asbestos Screen	NAD
					20/07/2015	Asbestos Screen (2)	NAD
					20/07/2015	Aspesios Level	
15/10240	1	BH11		6	18/07/2015	Mass of Dry Sample	48.6 (n)
10/10240		5		0	20/07/2015	General Description (Bulk Analysis)	soil-stones
					20/07/2015	Asbestos Containing Material	None
					20/07/2015	Asbestos Containing Material (2)	None
					20/07/2015	Asbestos Screen	NAD
					20/07/2015	Asbestos Screen (2)	NAD
					20/07/2015	Asbestos Level	NAD
15/10536	1	BH13_4-5M	4.0-5.0	3	27/07/2015	Mass of Dry Sample	39.4 (g)
					27/07/2015	General Description (Bulk Analysis)	Soil/Stone
					27/07/2015	Asbestos Containing Material	None
					27/07/2015	Asbestos Containing Material (2)	None
					27/07/2015	Asbestos Screen	NAD
					27/07/2015	Asbestos Screen (2)	NAD
					27/07/2015	Asbestos Level	NAD

	NDP	Reas	on	Rep	oort
--	-----	------	----	-----	------

Matrix : Solid

Client Name:	AECOM
Reference:	
Location:	City Block 2 & 7
Contact:	Brian Duggan

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	NDP Reason
15/8159	1	TP205	4.00-4.30	61-63	Asbestos detected in sample

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 15/8159 15/8407 15/8073 15/10240 15/10042 15/10536 15/9506 15/9992

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at $35^{\circ}C \pm 5^{\circ}C$ unless otherwise stated. Moisture content for CEN Leachate tests are dried at $105^{\circ}C \pm 5^{\circ}C$.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 (UKAS) accreditation applies to surface water and groundwater and one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS) accredited - UK.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range
AA	x5 Dilution
AB	x10 Dilution
AC	x20 Dilution
AD	x50 Dilution

JE Job No: 15/8159 15/8407 15/8073 15/10240 15/10042 15/10536 15/9992

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.				
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.			AR	Yes
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5/TM36	TM005: Modified USEPA 8015B. Determination of solvent Extractable Petroleum Hydrocarbons (EPH) including column fractionation in the carbon range of C10-35 into aliphatic and aromatic fractions by GC-FID. TM036: Modified USEPA 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chair range of C5-10 by headspace GC-FID.	PM12/PM16	CWG GC-FID			AR	Yes

Method Code Appendix

JE Job No: 15/8159 15/8407 15/8073 15/10240 15/10042 15/10536 15/9992

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM15	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM15	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM16	Modified USEPA 8270. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM17	Modified US EPA method 8270. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified USEPA 8163. Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified USEPA 415.1. Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.	Yes		AD	Yes
TM22	Modified USEPA 160.4. Gravimetric determination of Loss on Ignition by temperature controlled Muffle Furnace (450°C)	PM0	No preparation is required.	Yes		AD	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
TM27	Modified US EPA method 9056.Determination of water soluble anions using Dionex (Ion- Chromatography).	PM0	No preparation is required.			AR	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes

JE Job No: 15/8159 15/8407 15/8073 15/10240 15/10042 15/10536 15/9992

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
ТМ30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7	PM17	Modified method EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
ТМ30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7	PM62	Acid digestion of as received solid samples using Aqua Regia refluxed at 112.5 $^\circ \text{C}.$			AR	Yes
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM20	Extraction of dried and ground samples with deionised water in a 2:1 water to solid ratio for anions. Extraction of as received samples with deionised water in a 2:1 water to solid ratio for ammoniacal nitrogen. Samples are extracted using an orbital shaker.	Yes		AR	Yes
TM60	Modified USEPA 9060. Determination of TOC by calculation from Total Carbon and Inorganic Carbon using a TOC analyser, the carbon in the sample is converted to CO2 and then passed through a non-dispersive infrared gas analyser (NDIR).	PM0	No preparation is required.			AR	Yes
TM61	Modified US EPA methods 245.7 and 200.7. Determination of Mercury by Cold Vapour Atomic Fluorescence.	PM38	Samples are brominated to reduce all mercury compounds to Mercury (II) which is analysed using method TM061.	Yes		AR	Yes

JE Job No: 15/8159 15/8407 15/8073 15/10240 15/10042 15/10536 15/9992

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM65	Asbestos Bulk Identification method based on HSG 248.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.			AR	Yes
TM65	Asbestos Bulk Identification method based on HSG 248.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.			AR	
TM65	Asbestos Bulk Identification method based on HSG 248.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 and 9045D. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.			AR	Yes
TM73	Modified US EPA methods 150.1 and 9045D. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
NONE	No Method Code	NONE	No Method Code				
NONE	No Method Code	NONE	No Method Code			AR	Yes
NONE	No Method Code	PM17	Modified method EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				
NONE	No Method Code	PM17	Modified method EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.			AR	
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.			AR	

Method Code Appendix

Appendix D – Laboratory Reports Groundwater Samples

ABOUT AECOM

In a complex and unpredictable world, where growing demands have to be met with finite resources, AECOM brings experience gained from improving quality of life in hundreds of places.

We bring together economists, planners, engineers, designers and project managers to work on projects at every scale. We engineer energy efficient buildings and we build new links between cities. We design new communities and regenerate existing ones. We are the first whole environments business, going beyond buildings and infrastructure. Our Europe teams form an important part of our worldwide network of nearly 100,000 staff in 150 countries. Through 360 ingenuity, we develop pioneering solutions that help our clients to see further and go further. www.aecom.com Follow us on Twitter: @aecom

APPENDIX C

Generic Assessment Criteria for a Commercial Site Use

Generic assessment criteria for human health: commercial scenario

Background

RSK's generic assessment criteria (GAC) were initially prepared following the publication by the Environment Agency (EA) of soil guideline value (SGV) and toxicological (TOX) reports, and associated publications in 2009⁽¹⁾. RSK GAC were updated following the publication of GAC by LQM/CIEH in 2009⁽²⁾. RSK GAC are periodically revised when updated information on toxicological, land use or receptor parameters is published.

Updates to the RSK GAC

In 2014, the publication of Category 4 Screening Levels (C4SL)^(3,4), as part of the Defra-funded research project SP1010, included modifications to certain exposure assumptions documented within EA Science Report SC050221/SR3 (herein after referred to as SR3)⁽⁵⁾ used in the generation of SGVs.

C4SL were published for six substances (cadmium, arsenic, benzene, benzo(a)pyrene, chromium VI and lead) for a sandy loam soil type with 6% soil organic matter, based on a low level of toxicological concern (LLTC; see Section 2.3 of research project report SP1010⁽³⁾). Where a C4SL has been published, the RSK GAC duplicates the C4SL published values using all input parameters within the SP1010 final project report⁽³⁾ and associated appendices⁽⁶⁾, and adopts them as GAC for these six substances.

For all other substances the only C4SL exposure modification relevant to a commercial end use are daily inhalation rates.

The RSK GAC have also been revised with updated toxicology published by LQM/CIEH in 2015⁽⁷⁾ or by the USEPA⁽¹⁴⁾, where a C4SL has not been published.

RSK GAC derivation for metals and organic compounds

Model selection

Soil assessment criteria (SAC) were calculated using the Contaminated Land Exposure Assessment (CLEA) tool v1.071, supporting EA guidance^(5,8,9) and revised exposure scenarios published for the C4SL⁽³⁾. The SAC are also termed GAC.

Pathway selection

In accordance with SR3⁽⁵⁾ the commercial scenario considers risks to a female worker who works from the age of 16 to 65 years. It should be noted that this end use is not suitable for a workplace nursery but may be appropriate for a sports centre or shopping centre where children are present. In accordance with Box 3.5, SR3⁽⁵⁾ the pathways considered for production of the SAC in the commercial scenario are

- direct soil and dust ingestion
- dermal contact with soil both indoors and outdoors
- indoor air inhalation from soil and vapour and outdoor inhalation of soil and vapour.

With respect to volatilisation, the CLEA model assumes a simple linear partitioning of a chemical in the soil between the sorbed, dissolved and vapour phase⁽⁹⁾. The upper boundaries of this partitioning are represented by the maximum aqueous solubility and pure saturated vapour concentration of the chemical. The CLEA model estimates saturated soil concentrations where these limits are reached⁽⁹⁾. The CLEA software uses a traffic light system to identify when individual and/or combined assessment criteria exceed the lower of either the aqueous- or vapour-based soil saturation limits. Model output cells are flagged red where the saturated soil concentration has been exceeded and the contribution of the indoor and outdoor vapour pathway to total exposure is greater than 10%. In this case, further consideration of the following is required⁽⁹⁾:

- Free phase contamination may be present.
- Exposure from the vapour pathways will be over-predicted by the model, as in reality the vapour phase concentration will not increase at concentrations above saturation limits
- Where the vapour pathway contribution is greater than 90%, it is unlikely the relevant health criteria value (HCV) will be exceeded at soil concentrations at least a factor of ten higher than the relevant HCV.

Where the vapour pathway is the predominant pathway (contributes greater than 90% of exposure) or the only exposure route considered and the cell is highlighted red (SAC exceeds saturation limit), the risk based on the assumed conceptual model is likely to be negligible as the vapour risk is assumed to be tolerable at maximum possible soil concentrations. In such circumstances, the vapour pathway exposure should be considered based on the presence of free phase or non-aqueous phase liquid sources and the measured concentrations of volatile organic compounds (VOC) in the vapour phase. Screening could be considered based on setting the SAC as the modelled soil saturation limits. However, as stated within the CLEA handbook⁽⁹⁾, this is likely to not be practical in many cases because of the very low saturation limits and, in any case, is highly conservative.

It should also be noted that for mixtures of compounds, free phase may be present where soil (or groundwater) concentrations are well below saturation limits for individual compounds.

Where the vapour pathway is only one of the exposure pathways considered, an additional approach can then be utilised as detailed within Section 4.12 of the CLEA model handbook⁽⁹⁾, which explains how to calculate an effective assessment criterion manually.

SR3⁽⁵⁾ states that, as a general rule of thumb, it is recognised that estimating vapour phase concentrations from dissolved and sorbed phase contamination by petroleum hydrocarbons are at least a factor of ten higher than those likely to be measured on-site. RSK has therefore applied an empirical subsurface to indoor air correction factor of 10 into the CLEA model chemical database for all petroleum hydrocarbon fractions (including BTEX, trimethylbenzenes and the polycyclic aromatic hydrocarbons (PAH) naphthalene, acenaphthene and acenaphthylene) to reduce this conservatism.

Input selection

The most up-to-date published chemical and toxicological data was obtained from EA Report SC050021/SR7⁽¹⁰⁾, the EA TOX⁽¹⁾ reports, the C4SL SP1010 project report and associated appendices^(3,6), the 2015 LQM/CIEH report⁽⁷⁾ or the USEPA IRIS database⁽¹⁴⁾. Where a C4SL has been published, the RSK GAC have duplicated the C4SL published values using all input parameters within the SP1010 final project report⁽³⁾ and associated appendices⁽⁶⁾, and has

adopted them as GAC for these six substances. Toxicological and specific chemical parameters for aromatic hydrocarbon C_8-C_9 (styrene), 1,2,4-trimethylbenzene and methyl tertiary-butyl ether (MTBE) were obtained from the CL:AIRE Soil Generic Assessment Criteria report⁽¹¹⁾.

For TPH, aromatic hydrocarbons C_5-C_8 were not modelled, as this range comprises benzene and toluene, which are modelled separately. The aromatic C_8-C_9 hydrocarbon fraction comprises ethylbenzene, xylene and styrene. As ethylbenzene and xylene are being modelled separately, the physical, chemical and toxicological data for aromatic C_8-C_9 have been taken from styrene.

Physical parameters

For the commercial end use, the CLEA default pre-1970s three-storey office building was used. SR3⁽⁵⁾ notes this commercial building type to be the most conservative in terms of protection from vapour intrusion. The default input building parameters presented in Table 3.10 of SR3⁽⁵⁾ have been used.

The parameters for a sandy loam soil type were used in line with Table 4.4 of SR3⁽⁵⁾. This includes a value of 6% for the percentage of soil organic matter (SOM) within the soil. In RSK's experience, this is rather high for many sites. To avoid undertaking site-specific risk assessments for this SOM, RSK has produced an additional set of GAC for SOM of 1% and 2.5% for all substances using the CLEA tool.

Summary of modifications to the default CLEA SR3⁽⁵⁾ input parameters for a commercial land use

In summary, the RSK commercial GAC were produced using the default input parameters for soil properties, the air dispersion model, building properties and the vapour model detailed in SR3⁽⁵⁾. Modifications to the default SR3⁽⁵⁾ exposure scenarios based on the C4SL exposure scenarios⁽³⁾ are presented in Table 2 below. The sole modification to the default commercial input parameters is the updated inhalation rate.

The final selected GAC are presented by pathway in Table 3 with the combined GAC in Table 4.

Figure 1: Conceptual model for CLEA commercial scenario

Table 1: Exposure assessment parameters for commercial scenario – inputs for CLEA model

Parameter	Value	Justification
Land use	Commercial	Chosen land use
Receptor	Female worker	Taken as female adult exposed over 49 years from age 16 to 65 years, Box 3.5, SR3 ⁽⁵⁾
Building	Office (pre- 1970)	Key generic assumption given in Box 3.5, SR3 ⁽⁵⁾ . Pre-1970s three-storey office building chosen as it is the most conservative in terms of protection from vapour intrusion (Section 3.4.6, SR3 ⁽⁵⁾)
Soil type	Sandy loam	Most common UK soil type (Section 4.3.1, Table 4.4, SR3 ⁽⁵⁾)
Start age class (AC)	17	AC corresponding to key generic assumption that the critical receptor is a working female adult
End AC	17	exposed over a 49-year period ironi age to to op years. Assumption given in Box 3.5, SR3 ⁽⁶⁾
SOM (%)	Q	Representative of sandy loam according to EA guidance note dated January 2009 entitled 'Changes We Have Made to the CLEA Framework Documents' ⁽¹³⁾
	-	To provide SAC for sites where SOM < 6% as often
	2.5	observed by RSK
РН	7	Model default

Table 2: Commercial – modified receptor inputs

Parameter	Unit	Value	Justification
Inhalation rate (AC17)	m³ day ⁻¹	15.7	Mean value USEPA, 2011 ⁽¹²⁾ ; Table 3.2, SP1010 ⁽³⁾

References

- Environment Agency (2009), 'Science Reports SC050021 SGV and TOX reports for: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like PCBs'; 'Supplementary information for the derivation of SGV for: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like PCBs', and 'Contaminants in soil: updated collation of toxicological data and intake values for humans: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like PCBs'. Available at: <u>https://www.gov.uk/government/publications/contaminants-in-soilupdated-collation-of-toxicological-data-and-intake-values-for-humans</u> and <u>https://www.gov.uk/government/publications/land-contamination-soil-guideline-values-</u> sgvs (accessed 4 February 2015)
- 2. Nathanial, C. P., McCaffrey, C., Ashmore, M., Cheng, Y., Gillet, A. G., Ogden, R. C. and Scott, D. (2009), *LQM/CIEH Generic Assessment Criteria for Human Health Risk Assessment*, second edition (Nottingham: Land Quality Press).
- Contaminated Land: Applications in Real Environment (CL:AIRE) (2014). 'Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination', Revision 2, DEFRA research project SP1010.
- 4. Department for Environment, Food and Rural Affairs (Defra) (2014), 'SP1010: Development of Category 4 Screening Levels for assessment of land affected by contamination Policy Companion Document', Revision 2.
- 5. Environment Agency (2009), *Science Report SC050021/SR3. Updated technical background to the CLEA model* (Bristol: Environment Agency).
- 6. Contaminated Land: Applications in Real Environment (CL:AIRE) (2014). 'Appendices C to H). DEFRA research project SP1010'.
- 7. Nathanial, C. P., McCaffrey, C., Gillet, A. G., Ogden, R. C. and Nathanial, J. F. (2015), *The LQM/CIEH S4ULs for Human Health Risk Assessment* (Nottingham: Land Quality Press).
- 8. Environment Agency (2009), *Human health toxicological assessment of contaminants in soil. Science Report Final SC050021/SR2* (Bristol: Environment Agency).
- 9. Environment Agency (2009), *Science Report SC050021/SR4 CLEA Software (version 1.05) Handbook* (Bristol: Environment Agency).
- 10. Environment Agency (2008), Science Report SC050021/SR7. Compilation of Data for Priority Organic Pollutants for Derivation of Soil Guideline Values (Bristol: Environment Agency).
- 11. CL:AIRE (2009), Soil Generic Assessment Criteria for Human Health Risk Assessment (London: CL:AIRE).
- 12. USEPA (2011), *Exposure factors handbook*, EPA/600/R-090/052F (Washington, DC: Office of Research and Development).
- 13. Environment Agency (2009), 'Changes made to the CLEA framework documents after the three-month evaluation period in 2008', released January 2009.
- USEPA (2010). Hydrogen cyanide and cyanide salts. Integrated Risk Information Systems (IRIS) Chemical Assessment Summary. September 2010. <u>https://www.epa.gov/iris</u> (accessed 9 December 2015)

GENERIC ASSESSMENT CRITERIA	FOR HI	JMAN HEALTH	- COMMERCIAL										
Table 3 Human health generic assessment cr	riteria by	pathway for co	mmercial scenari	٥				2					
	Note	SAC approprie	ate to pathway SC	M 1% (mg/kg)	Soil saturation limit	SAC appropri	ate to pathway SOM	2.5% (mg/kg)	Soil saturation limit	SAC appropris	tte to pathway SO	M 6% (mg/kg)	Soil saturation
Compound	s	Oral	Innalation	Compined	(mg/kg)	Oral	Innalation	Compined	(mg/kg)	Oral	Innalation	compined	limit (mg/kg)
Metals	(40)	6 PEE . NO	1 265 .02		9	6 26E . 02	1 265.00			6 36E. M	1 260.00	q	
Cadmium	(a,U) (a)	0.33E+02	8.57F+02	4.10F+02	NR NR	7.73F±02	8.57F+02	4.10F+02	EN BN	7.73F+02	8.57F+02	4.10F+02	BN
Chromium (III) - trivalent	(c)	3.31E+05	8.57E+03	NR	RN	3.31E+05	8.57E+03	NR	RN	3.31E+05	8.57E+03	NR	NR
Chromium (VI) - hexavalent	(a,d)	9.62E+02	4.91E+01	NR	NR	9.62E+02	4.91E+01	RN	NR	9.62E+02	4.91E+01	RN	NR
Copper		1.89E+05	8.96E+04	6.83E+04	NR	1.89E+05	8.96E+04	6.83E+04	NR	1.89E+05	8.96E+04	6.83E+04	NR
Lead	(a)	2.32E+03	RN	RN	NR	2.32E+03	NR	NR	NR	2.32E+03	NR	NR	NR
Elemental Mercury (Hg ^o)	(q)	NR	1.54E+01	NR	4.31E+00	NR	3.26E+01	NR	1.07E+01	NR	5.80E+01	NR	2.58E+01
Inorganic Mercury (Hg ²⁺)		1.18E+03	1.97E+04	1.12E+03	NR	1.18E+03	1.97E+04	1.12E+03	NR	1.18E+03	1.97E+04	1.12E+03	NR
Methyl Mercury (Hg ⁴⁺)		3.38E+02	2.13E+03	2.92E+02	7.33E+01	3.38E+02	3.87E+03	3.11E+02	1.42E+02	3.38E+02	7.33E+03	3.23E+02	3.04E+02
Nickel	(p)	3.06E+03	9.83E+02	NR	NR	3.06E+03	9.83E+02	NR	NR	3.06E+03	9.83E+02	NR	NR
Selenium	(q)	1.23E+04	R	NR	R	1.23E+04	NR	RN	NR	1.23E+04	RN	NR	NR
Zinc	(q)	7.35E+05	1.97E+08	NR	R	7.35E+05	1.97E+08	NR	NR	7.35E+05	1.97E+08	NR	NR
Cyanide (free)		6.56E+02	7.51E+04	6.53E+02	RN	6.56E+02	7.51E+04	6.53E+02	RN	6.56E+02	7.51E+04	6.53E+02	NR
Volatile Orcanic Compounds													
Benzene	(a)	1.09E+03	2.79E+01	2.72E+01	1.22E+03	1.09E+03	5.19E+01	4.96E+01	2.26E+03	1.09E+03	1.08E+02	9.80E+01	4.71E+03
Toluene		4.24E+05	6.49E+04	5.63E+04	8.69E+02	4.24E+05	1.43E+05	1.07E+05	1.92E+03	4.24E+05	3.24E+05	1.84E+05	4.36E+03
Ethylbenzene		1.91E+05	5.89E+03	5.71E+03	5.18E+02	1.91E+05	1.38E+04	1.28E+04	1.22E+03	1.91E+05	3.21E+04	2.75E+04	2.84E+03
Xylene - m		3.43E+05	6.26E+03	6.15E+03	6.25E+02	3.43E+05	1.47E+04	1.41E+04	1.47E+03	3.43E+05	3.44E+04	3.12E+04	3.46E+03
Xylene - o		3.43E+05	6.73E+03	6.60E+03	4.78E+02	3.43E+05	1.57E+04	1.50E+04	1.12E+03	3.43E+05	3.65E+04	3.30E+04	2.62E+03
Xylene - p		3.43E+05	6.03E+03	5.92E+03	5.76E+02	3.43E+05	1.41E+04	1.36E+04	1.35E+03	3.43E+05	3.28E+04	3.00E+04	3.17E+03
Total xylene		3.43E+05	6.03E+03	5.92E+03	6.25E+02	3.43E+05	1.41E+04	1.36E+04	1.47E+03	3.43E+05	3.28E+04	3.00E+04	3.46E+03
Methyl tertiary-Butyl ether (MTBE)		5.72E+05	7.58E+03	7.48E+03	2.04E+04	5.72E+05	1.23E+04	1.21E+04	3.31E+04	5.72E+05	2.34E+04	2.24E+04	6.27E+04
Trichloroethene		9.53E+02	1.23E+00	1.23E+00	1.54E+03	9.53E+02	2.58E+00	2.57E+00	3.22E+03	9.53E+02	5.72E+00	5.69E+00	7.14E+03
Tetrachloroethene		1.12E+04	1.86E+01	1.86E+01	4.24E+02	1.12E+04	4.17E+01	4.16E+01	9.51E+02	1.12E+04	9.57E+01	9.49E+01	2.18E+03
1,1,1-Trichloroethane		1.14E+06	6.60E+02	6.60E+02	1.43E+03	1.14E+06	1.35E+03	1.35E+03	2.92E+03	1.14E+06	2.96E+03	2.95E+03	6.39E+03
1,1,1,2 Tetrachloroethane		1.10E+04	1.09E+02	1.08E+02	2.60E+03	1.10E+04	2.53E+02	2.47E+02	6.02E+03	1.10E+04	5.88E+02	5.59E+02	1.40E+04
1,1,2,2-Tetrachloroethane		1.10E+04	2.81E+02	2.74E+02	2.67E+03	1.10E+04 7.60E.00	5.75E+02	5.46E+02	5.46E+03	1.10E+04	1.26E+03	1.13E+03	1.20E+04
Carbon letrachloride		7.62E+03	2.8/E+00 6 77E 01	2.8/E+00 6 71E 01	1.52E+03	0.02E+03	6.29E+00 0.71E_01	6.28E+00 0.67E_01	3.32E+03	7.62E+03	1.43E+01 4.67E : 00	1.42E+01 4.6EE - 00	/.54E+03 8.42E+03
1,2-Dictrioroetriarie Vinvil Chlorida		2.23E+02	6.73E-01 5 95E-02	5 94E-01	3.41E+03	2.67F±01	3.71E-01 7 70E-02	3.6/E-01 7.67E-02	4.91E+03 1 76F±03	2.67F±01	1.0/E+00	1.03E+00	0.43E+03
1,2,4-Trimethylbenzene		NR	3.29E+02	NR	4.74E+02	RN	6.41E+02	RN	1.16E+03	NR	1.04E+03	NR	2.76E+03
1,3,5-Trimethylbenzene	(e)	NR	NR	NR	2.30E+02	NR	NR	NR	5.52E+02	NR	NR	NR	1.30E+03
Semi-Volatile Organic Compounds													
Acenaphthene		1.10E+05	2.75E+06	1.06E+05	5.70E+01	1.10E+05	5.36E+06	1.08E+05	1.41E+02	1.10E+05	8.83E+06	1.08E+05	3.36E+02
Acenaphthylene		1.10E+05	2.68E+06	1.05E+05	8.61E+01	1.10E+05	5.23E+06	1.07E+05	2.12E+02	1.10E+05	8.65E+06	1.08E+05	5.06E+02
Anthracene		5.49E+05	1.13E+07	5.23E+05	1.17E+00	5.49E+05	2.35E+07	5.36E+05	2.91E+00	5.49E+05	4.13E+07	5.42E+05	6.96E+00
Benzo(a)anthracene		2.84E+02	4.08E+02	1.67E+02	1.71E+00	2.84E+02	4.47E+02	1.74E+02	4.28E+00	2.84E+02	4.67E+02	1.76E+02	1.03E+01
Benzo(a)pyrene	(a)	7.68E+01	2.04E+02	5.58E+01	9.11E-01	7.68E+01	2.09E+02	5.61E+01	2.28E+00	7.68E+01	2.11E+02	5.63E+01	5.46E+00
Benzo(b)fluoranthene		7.13E+01	1.17E+02	4.43E+01	1.22E+00	7.13E+01 6.00E.00	1.20E+02	4.47E+01	3.04E+00	7.13E+01 6.00E+00	1.21E+02 4.07E+04	4.49E+01	7.29E+00
Benzo(9,11,1)per yrene Benzo(b)fi ioranthene		0.23C+03	2 115 - 02	0.30E+00	6 87E-04	0.23C+03	3 17E -03	0.30E+00 1 1 8E . 02	3.00E-02	0.29E+03	2 01E - 03	3.30E+03	8.53E-02 4.19E.00
Chrysene		5.67E+02	8.89E+02	3.46E+02	4.40E-01	5.67E+02	9.25E+02	3.52E+02	1.10E+00	5.67E+02	9.47E+02	3.55E+02	2.64E+00
Dibenzo(a,h)anthracene		5.67E+00	9.32E+00	3.53E+00	3.93E-03	5.67E+00	9.52E+00	3.55E+00	9.82E-03	5.67E+00	9.64E+00	3.57E+00	2.36E-02
Fluoranthene		2.29E+04	1.89E+06	2.26E+04	1.89E+01	2.29E+04	2.72E+06	2.27E+04	4.73E+01	2.29E+04	3.32E+06	2.27E+04	1.13E+02
Fluorene		7.31E+04	4.55E+05	6.30E+04	3.09E+01	7.31E+04	1.06E+06	6.84E+04	7.65E+01	7.31E+04	2.24E+06	7.08E+04	1.83E+02
Indeno(1,2,3-cd)pyrene		8.10E+02	1.31E+03	5.01E+02	6.13E-02	8.10E+02	1.35E+03	5.06E+02	1.53E-01	8.10E+02	1.37E+03	5.09E+02	3.68E-01
Naphthalene		3.64E+04	1.87E+03	1.78E+03	7.64E+01	3.64E+04	4.39E+03	3.92E+03	1.83E+02	3.64E+04	9.94E+03	7.81E+03	4.32E+02
Phenanthrene		2.28E+04	5.35E+05 4.47E - 06	2.19E+04 E 42E - 04	3.60E+01	2.28E+04 E 40E : 04	1.09E+06 e 4eE - 0e	2.24E+04 E 44E -04	8.96E+01 5.40E - 00	2.28E+04 E 40E 04	1.86E+06 7.01E . 06	2.25E+04 E 4EE -04	2.14E+02 1.32E - 01
Phenol		1.10E+06	2.65E+04	2.59E+04	2.42E+04	0.43E+04 1.10E+06	0.40E+00 3.04E+04	2.96E+04	3.81E+00	0.49E+04 1.10E+06	3.46E+04	3.35E+04	7.03E+04

T25656 RSK GAC
٩٢
ERC
MMO
S S
÷.
Ę.
A.
뽀
z
₹
5
т
۳ ۳
Ĕ
≤
£
E
5
Ĕ
z
۳
ŝ
ŭ
SS
<
õ
Ш.
z
8

Table 3

	No	SAC appropris	ate to pathway SC	OM 1% (mg/kg)	Soil saturation limit	SAC appropris	ite to pathway SOM	2.5% (mg/kg)	Soil saturation limit	SAC appropri	ate to pathway S0	0M 6% (mg/kg)	Soil saturation
Compound	tes	Oral	Inhalation	Combined	(mg/kg)	Oral	Inhalation	Combined	(mg/kg)	Oral	Inhalation	Combined	limit (mg/kg)
Total netroleum hvdrocarhons													
Aliphatic hydrocarbons EC5-EC6		4.77E+06	3.19E+03	3.19E+03	3.04E+02	4.77E+06	5.86E+03	5.86E+03	5.58E+02	4.77E+06	1.21E+04	1.21E+04	1.15E+03
Aliphatic hydrocarbons >EC6-EC8		4.77E+06	7.79E+03	7.78E+03	1.44E+02	4.77E+06	1.74E+04	1.74E+04	3.22E+02	4.77E+06	3.97E+04	3.96E+04	7.36E+02
Aliphatic hydrocarbons >EC8-EC10		9.53E+04	2.02E+03	2.00E+03	7.77E+01	9.53E+04	4.91E+03	4.85E+03	1.90E+02	9.53E+04	1.17E+04	1.13E+04	4.51E+02
Aliphatic hydrocarbons >EC10-EC12		9.53E+04	9.97E+03	9.69E+03	4.75E+01	9.53E+04	2.47E+04	2.29E+04	1.18E+02	9.53E+04	5.89E+04	4.73E+04	2.83E+02
Aliphatic hydrocarbons >EC12-EC16		9.53E+04	8.26E+04	5.88E+04	2.37E+01	9.53E+04	2.04E+05	8.17E+04	5.91E+01	9.53E+04	4.81E+05	9.02E+04	1.42E+02
Aliphatic hydrocarbons >EC16-EC35	(q)	1.58E+06	NR	NR	8.48E+00	1.75E+06	NR	NR	2.12E+01	1.83E+06	NR	NR	5.09E+01
Aliphatic hydrocarbons >EC35-EC44	(q)	1.58E+06	NR	NR	8.48E+00	1.75E+06	NR	NR	2.12E+01	1.83E+06	NR	NR	5.09E+01
Aromatic hydrocarbons >EC8-EC9 (styn	rene)	2.29E+04	3.66E+04	1.41E+04	6.26E+02	2.29E+04	8.39E+04	1.80E+04	1.44E+03	2.29E+04	1.93E+05	2.04E+04	3.35E+03
Aromatic hydrocarbons >EC9-EC10		3.81E+04	3.55E+03	3.46E+03	6.13E+02	3.81E+04	8.66E+03	8.11E+03	1.50E+03	3.81E+04	2.05E+04	1.70E+04	3.58E+03
Aromatic hydrocarbons >EC10-EC12		3.81E+04	1.92E+04	1.62E+04	3.64E+02	3.81E+04	4.69E+04	2.79E+04	8.99E+02	3.81E+04	1.10E+05	3.42E+04	2.15E+03
Aromatic hydrocarbons >EC12-EC16		3.81E+04	2.02E+05	3.62E+04	1.69E+02	3.81E+04	4.76E+05	3.73E+04	4.19E+02	3.81E+04	1.03E+06	3.78E+04	1.00E+03
<pre>4romatic hydrocarbons >EC16-EC21</pre>	(q)	2.82E+04	NR	NR	5.37E+01	2.83E+04	NR	NR	1.34E+02	2.84E+04	NR	NR	3.21E+02
Aromatic hydrocarbons >EC21-EC35	(q)	2.84E+04	NR	NR	4.83E+00	2.84E+04	NR	NR	1.21E+01	2.84E+04	NR	NR	2.90E+01
<pre>4romatic hydrocarbons >EC35-EC44</pre>	(q)	2.84E+04	NR	NR	4.83E+00	2.84E+04	NR	NR	1.21E+01	2.84E+04	NR	NR	2.90E+01
Votes:													
The CLEA model output is colour coded	depenc	reening value. So the short of the second	r the soil saturation	l value. I limit has been exi	seeded.								
	0	Calculated SAC ex	xceeds soil saturati	ion limit and may s	ignificantly affect the int	erpretation of any exc	eedances as the cont	ribution of the indoor	and outdoor vapour pa	thway to total expo	sure is		
	~	-10%.											
	0	Calculated SAC ex	xceeds soil saturati	ion limit but the ex	ceedance will not affect	the SAC significantly	as the contribution of	the indoor and outdo	or vapour pathwav to to	tal exposure is <1	0%.		

Т

T

Calculated SAC does not exceed the soil saturation limit.

TPH ractions, PAHs napthetere and acenaphthylere. BTEX and trimethylenese compounds were produced using an attenuation factor for the indoor at inhalation pathway of 10 to reduce conservatism associated with the vapor inhalation pathway The SAC for organic compounds are dependent upon soil organic matter (SOM) (%) content. To obtain SOM from total organic carbon (TOC) (%) divide b 0.58. 1% SOM is 0.58% TOC. DL Rowell Soil Science: Methods and Applications, Longmans, 1994. Section 10.1.1, SR3)

a) SAC for arsenic, benzene, benzo(a)pyrene, cadmium, chromium VI and lead are derived using the C4SL toxicology data.

(b) SAC for selenium should not include the initiality pathway as no expert group HCV has been derived; aliphatic and aromatic hydrocarbons >EC16 should not include inhalation pathway due to their non-volatile nature and inhalation exposure being minimal (oral, dermal and inhalation exposure is compared to the oral HCV); arsenic should only be based on oral contribution (rather than combined) owing to the relative small contribution from inhalation in accordance with the SGV report. The Oral SAC should be adopted for zinc and benzo(a)pyrene.

(c) SAC for CrIII should be based on the lower of the oral and inhalation SAC (see LQM/CIEH 2015 Section 6.8)

(d) SAC for elemental mercury, chromium VI and nickel should be based on the inhalation pathway only.

(e) SAC for 1,3,5-trimethylbenzene is not recorded owing to the lack of toxicological data, SAC for 1,2,4 trimethylbenzene may be used.

Table 4 Human Health Generic Assessment Criteria for Commercial Scenario

Compound	SAC for Soil SOM 1% (mg/kg)	SAC for Soil SOM 2.5% (mg/kg)	SAC for Soil SOM 6% (mg/kg)
Matala			
Arsenic	640	640	640
Cadmium	410	410	410
Chromium (III) - trivalent	8,600	8,600	8,600
Chromium (VI) - hexavalent	49 68.000	49 68.000	49 68.000
Lead	2,300	2,300	2,300
Elemental Mercury (Hg ⁰)	15 (4)	33 (11)	58 (26)
Inorganic Mercury (Hg ²⁺)	1,120	1,120	1,120
Methyl Mercury (Hg ⁴⁺)	290 (73)	310 (142)	320
Nickel	980	980	980
Zinc	740.000	740,000	740.000
Cyanide (free)	650	650	650
Volatile Organic Compounds	-		
Benzene	27	50	98
I oluene Ethylbenzene	56,000 (869)	107,000 (1,916)	184,000 (4,357)
Xvlene - m	6,200 (625)	14,100 (1,474)	31,200 (3,457)
Xylene - o	6,600 (478)	15,000 (1,120)	33,000 (2,618)
Xylene - p	5,900 (576)	13,600 (1,353)	30,000 (3,167)
Total xylene	5,900 (625)	13,600 (1,474)	30,000 (3,457)
Trichloroethene	7,500	3	6
Tetrachloroethene	20	40	90
1,1,1-Trichloroethane	700	1,300	3,000
1,1,1,2 Tetrachloroethane	110	250	560
1,1,2,2-Tetrachloroethane	270	550	1,130
Carbon Tetrachloride	2.9	6.3	14.2
1,2-Dichloroethane	0.67	0.97	1.65
1,2,4-Trimethylbenzene	330	640	1,040
1,3,5-Trimethylbenzene	NR	NR	NR
Semi-Volatile Organic Compounds			
Acenaphthene	110,000	110,000	110,000
Acenaphthylene	110,000	110,000	110,000
Anthracene Benzo(a)anthracene	520,000	540,000	180
Benzo(a)pyrene	77	77	77
Benzo(b)fluoranthene	44	45	45
Benzo(g,h,i)perylene	3,900	3,900	4,000
Benzo(k)fluoranthene	1,200	1,200	1,200
Chrysene Dibonzo(a h)anthracono	350	350	350
Fluoranthene	23.000	23.000	23.000
Fluorene	63,000 (31)	68,000	71,000
Indeno(1,2,3-cd)pyrene	500	510	510
Naphthalene	1,800 (76)	3,900 (183)	7,800 (432)
Phenanthrene	22,000	22,000	23,000
Phenol	440*	690*	1,300*
Total Petroleum Hydrocarbons			L
Aliphatic hydrocarbons EC ₅ -EC ₆	3,200 (304)	5,900 (558)	12,100 (1,150)
Aliphatic hydrocarbons >EC _e -EC _e	7.800 (144)	17.400 (322)	39.600 (736)
Aliphatic hydrocarbons >ECo-ECo	2 000 (78)	4 800 (190)	11 300 (451)
Aliphatic hydrocarbons >EC ₄₀ -EC ₄₀	9 700 (48)	22 900 (118)	47 300 (283)
	59,000 (24)	82,000 (59)	90,000 (142)
Aliphatic hydrocarbons > EC_{12} - EC_{16}	1 000 000**	1 000 000**	1,000,000**
Aliphatic hydrocarbons > EC_{16} - EC_{35}	1,000,000	1,000,000	1,000,000
An emptial in the formation of the formation in the form	14,000,(626)	18,000,000	20,000 (2,250)
Aromatic hydrocarbons $>EC_8 - EC_9$ (stylene)	14,000 (626)	10,000 (1,440)	20,000 (3,350)
Aromatic hydrocarbons $> EC_9 - EC_{10}$	3,500 (613)	8,100 (1,503)	17,000 (3,580)
Aromatic hydrocarbons $>EG_{10}-EG_{12}$	16,000 (364)	28,000 (899)	34,000 (2,150)
Aromatic hydrocarbons > EC EC	30,000 (109)	37,000	38,000
Aromalic hydrocarbons >EC ₁₆ -EC ₂₁	28,000	28,000	28,000
Aromatic hydrocarbons >EC ₂₁ -EC ₃₅ Aromatic hydrocarbons >EC ₃₅ -EC ₄₄	28,000	28,000	28,000
	-,	-,	- ,
Minerals Asbestos	No asbestos detected with IC) or <0.001% dry weight ¹	
Notes:		or co.com any weight	
'-' Generic assessment criteria not calculated owing to lo	ow volatility of substance and therefo	re no pathway, or an absence of to	kicological data.
NR - SAC for 1,3,5-trimethylbenzene is not recorded ow	ing to the lack of toxicological data,	SAC for 1,2,4 trimethylbenzene may	/ be used
EC - equivalent carbon. GrAC - groundwater assessmer	nt criteria. SAC - soil assessment crit	eria.	
* The GAC for Phenol is based on a threshold which is p ** Denoted SAC calculated exceeds 100% contaminant.	protective of direct contact (SC05002 hence 100% (1,000,000mg/kg) has	1/Phenol SGV report) been taken as SAC	
	Organia Matter (OOM) (20)	To obtain COM form to the	arbon (TOO) (0() 4545 1 0 55
1% SOM is 0.58% TOC. DL Rowell Soil Science: M	organic Matter (SOM) (%) content. ethods and Applications, Longmans,	1994.	arbon (TOC) (%) divide by 0.58.
SAC for TPH fractions, PAHs napthalene, acenaphthen air inhalation pathway of 10 to reduce conservatism	e and acenaphthylene, BTEX and trir associated with the vapour inhalation	nethylbenzene compounds were pro n pathway, section 10.1.1, SR3.	oduced using an attenuation facto
(VALUE IN BRACKETS) RSK has adopted an approach for petroleum hydrocarb fraction has been tabulated as the SAC with the correct	ons in accordance with LQM/CIEH w	hereby the concentration modelled	for each petroleum hydrocarbon

Generic groundwater assessment criteria (GrAC) for human health: commercial scenario (adult receptor)

Background

Volatile organic compounds (VOC) in groundwater have the potential to pose risks to residential site end users via indoor and outdoor inhalation exposure. Due to significant dilution effects in outdoor air, inhalation risk is dominated by indoor exposure. The GrAC conceptual site model (CSM) is shown in Figure 1 (not to scale).

RSK GrAC derivation

Model selection

The Society for Brownfield Risk Assessment (SoBRA) published a set of generic assessment criteria for assessing vapour risk to human health from volatile contaminants in groundwater in February 2017⁽¹⁾. The criteria were developed for a list of common VOC using the Environment Agency Contaminated Land Exposure Assessment (CLEA) tool⁽²⁾ based on a sand soil type and a groundwater depth of 0.65 m below foundation base level. The CLEA tool is not designed to directly model VOC in groundwater and the SoBRA generic criteria are recognised as being conservative since calculations in CLEA are based on three-phase partitioning in the unsaturated zone between soil, soil vapour and soil moisture, with the latter taken by SoBRA as a groundwater equivalent. This method does not take account of the presence of a semi-saturated capillary fringe above the water table, which will serve to provide some mitigation to vertical soil vapour migration.

RSK GrAC are calculated using the RBCA Toolkit for Chemical Releases (version 2.6) with the Johnson and Ettinger model, based on the CSM in Figure 1 for a pre-1970 three storey office

building (as defined in SR3⁽³⁾, Table 4.21) and which allows consideration of a capillary fringe. The capillary fringe is the subsurface layer in which groundwater seeps up from a water table by capillary action to partially fill soil pores.

The RBCA model was used in preference to the Environment Agency Contaminated Land Exposure Assessment (CLEA) tool⁽²⁾, as the CLEA tool is not designed to directly model VOC in groundwater and does not take account of the presence of a semi-saturated capillary zone.

Conceptual model

In accordance with SR3⁽³⁾, the commercial scenario considers risks to an adult female worker who works from the age of 16 to 65 years. It should be noted that this end use is not suitable for a workplace nursery (where children will be present for an extended period of time) but may be appropriate for a sports centre or shopping centre where children are present but for limited periods of time.

The pollutant linkage considered in production of the GrAC is the volatilisation of compounds from groundwater and subsequent vapour inhalation by the identified receptor while indoors. Figure 1 illustrates this linkage. Although the outdoor air inhalation pathway is also valid, this contributes little to the overall risks owing to the dilution in outdoor air. RBCA does not take account of the presence of non-aqueous phase chemicals but highlights when the assessment criterion exceeds the solubility limit of the pure compound.

Input selection – chemical and toxicological parameters

Key parameters used in the RBCA model are listed and justified in Table 1. The most up-to-date published chemical and toxicological data was obtained from EA Report SC050021/SR7⁽²⁾, the EA TOX⁽⁵⁾ reports, and published by Nathanial et al.,⁽⁶⁾, as appropriate. Toxicological and specific chemical parameters for aromatic hydrocarbon C8–C9 (styrene), 1,2,4-trimethylbenzene and methyl tertiary-butyl ether (MTBE) were obtained from the CL:AIRE Soil Generic Assessment Criteria report⁽⁷⁾.

The toxicological input parameters are associated with minimal risk, rather than low risk.

For petroleum hydrocarbon fractions, aromatic hydrocarbons C5–C8 were not modelled, as this range comprises benzene and toluene, which are modelled separately. The aromatic C8–C9 hydrocarbon fraction comprises ethylbenzene, xylenes and styrene. As ethylbenzene and xylenes are being modelled separately, the physical, chemical and toxicological data for aromatic C8–C9 have been taken from styrene.

For the Commercial GrAC, the Health Criteria Values (HCV) used in the modelling were derived using the toxicological data discussed above, amended as follows:

- An adult weighing 70kg and breathing 15.7m³ air per day in accordance with the revised exposure parameters used in the SP1010 final project report for the Category 4 Screening Levels (C4SL) (Table 3.2⁽⁸⁾) and USEPA data⁽⁹⁾
- Background inhalation (mean daily intake(MDI)) for an adult (Age Class 17).

The amended HCV used in the derivation of the RSK GrAC are presented in Table 1.

Table 1: Amended Health Criteria Values

	Modified HCV (mg/m ³)
VOC / SVOC	Adult (Commercial)
МТВЕ	3.2064
Benzene	0.0062
Toluene	6.2362
Ethylbenzene	0.3301
Xylenes	0.2609
Trimethybenzenes	0.0085
TPH_Aliph EC5-EC6	11.1465
TPH_Aliph >EC6-EC8	11.1465
TPH_Aliph >EC8-EC10	0.6465
TPH_Aliph >EC10-EC12	0.6465
TPH_Aliph >EC12-EC16	0.6465
TPH_Arom >EC8-EC9 (styrene)	0.5350
TPH_Arom >EC9-EC10	0.1338
TPH_Arom >EC10-EC12	0.1338
TPH_Arom >EC12-EC16	0.1338
Acenaphthene	0.2675
Acenaphthylene	0.2675
Naphthalene	0.0037
Vinyl chloride	0.0013
Dichloroethane-1,2	0.0005
Tetrachloroethene	0.0363
Carbon tetrachloride	0.0114
Trichloroethane-1,1,1	2.6752
Trichloroethene	0.0025
Tetrachloroethane 1,1,2,2 & 1,1,1,2	0.0257
1,1,2-Trichloroethane	0.0216
1,1-dichloroethene	0.2541
Chloroethane	12.7374
Chloromethane	0.0115
Dichloromethane	0.5765

Note on Trimethylbenzenes

For trimethylbenzenes the CL:AIRE report⁽⁷⁾ based background inhalation from non-soil sources (MDI) on a Dutch study from 1985, which is reported to have identified an average daily dose of 1,2,4-trimethylbenzene of 86 ug d⁻¹ (1,3,5-trimethylbenzene was 20.5 ug d⁻¹). This dose value was based on the upper end of the identified concentration range of 1,2,4-trimethylbenzene (2.46 – 5.66 ug m⁻³) and was used to calculate an a MDI of 1.23 ug kg⁻¹ bw d⁻¹ for a 70 kg adult breathing 20 m³ of air daily.

The approach recommended in SR2⁽¹⁰⁾, and also adopted for the C4SLs⁽⁸⁾, for non-carcinogenic (threshold) compounds such as trimethylbenzenes is to subtract the MDI from the tolerable daily intake (TDI) to obtain a tolerable daily intake from soil (TDSI) in units of ug kg⁻¹ bw d⁻¹. For 1,2,4-trimethylbenzene, the adult MDI from the Dutch study used in the CL:AIRE report⁽⁷⁾ (1.23 ug kg⁻¹ bw d⁻¹) is a significant proportion of the TDI (2.0 ug kg⁻¹ bw d⁻¹), resulting in a low TDSI (1.0 ug

 kg^{-1} bw d^{-1}) when the 50% rule is applied (i.e. TDSI = TDI * 0.5 when MDI is high relative to TDI). This TDSI equates to an Inhalation Reference Concentration (or modified Health Criteria Value) for adults of 3.4 ug m⁻³ (70 kg adult breathing 15.7 m³ d⁻¹).

By comparison the adult inhalation modified HCV for benzene is 6.2 ug m⁻³, which is proven human carcinogen (non-threshold compound).

The MDI for 1,2,4-trimethylbenzene is considered by RSK to be overly conservative for the following reasons:

- The Dutch 1985 study is dated and air quality has improved since this time
- The maximum value in the range (5.66 ug m⁻³) was used in calculating the MDI
- Experience has shown that trimethylbenzenes often appear to drive inhalation risks to a greater extent than benzene, even though the latter is carcinogenic and more volatile.

As an alternative to the 1985 Dutch study, RSK have obtained automated roadside air quality monitoring data for the UK from www.uk-air.defra.gov.uk/. The average concentration of 1,2,4-trimethylbenzene measured during 2015 at Eltham, south-east London (urban) was 0.309 ug m⁻³, significantly lower than that identified in the Dutch study and used by CL:AIRE⁽⁷⁾ for calculation of a MDI. Whilst an average concentration of 1,2,4-trimethylbenzene in UK urban and rural areas is likely to be significantly below 0.0.309 ug m⁻³, this value is considered to be suitably conservative for the calculation of a modified HCV for trimethylbenzenes in the UK.

On this basis, the HCV for 1,2,4-trimethylbenzene for adults and children was calculated as 8.5 ug m⁻³ (0.0085 mg m⁻³) and 2.6 ug m⁻³ (0.0026 mg m⁻³), respectively (see Table 3). Due to the paucity of toxicological data for 1,2,3-trimethylbenzene and 1,3,5-trimethylbenzene the modified HCV for 1,2,4-trimethylbenzene is considered suitable for assessing total trimethylbenzenes.

Note on aqueous solubility and the RSK GrAC

Where the modelled assessment criteria, or the modelled assessment criteria with the correction factor applied to those contaminants specified below, exceeds the aqueous solubility limit the assessment criteria defaults to this concentration and consequently the GrAC is set at the limit of solubility. These assessment criteria are shaded in red in Table 3 at the end of this document.

The theoretical aqueous solubility is the maximum amount of a single chemical that will dissolve in pure water at a specified temperature. Above this concentration, the chemical will exist in the non-aqueous phase (i.e. in its natural physical form as a solid, liquid (NAPL) or gas). If the contaminant, based on its toxicity, is not considered to pose a risk to human health at the aqueous solubility concentration then the contaminant can be considered not to pose a risk to human health. Where the GrAC is set at the aqueous solubility limit (shaded in red on Table 3), this is not a risk based assessment criteria but is indicative of the maximum amount of chemical that would be found dissolved in the water. Therefore an exceedance of the RSK GrAC set at the aqueous solubility limit is <u>not</u> indicative that there may be potential risks to human health. It should be noted that for certain contaminants (e.g. the lighter petroleum hydrocarbon fractions) the aqueous solubility is very low and may be at, or below, the laboratory method detection limit. It should also be noted that non-aqueous phase may exist where concentrations of individual compounds are well below their solubility limits where they are part of a mixture, in accordance with Raoult's Law.

Input selection - physical parameters

For the commercial scenario, the CLEA default pre-1970s three-storey office building was used. SR3⁽³⁾ notes this commercial building type to be the most conservative in terms of risk from vapour intrusion. The building parameters used in the production of the RSK GACs are the default CLEA v1.06 inputs presented in Table 3.3 of SR3⁽³⁾.

The RSK GrAC have been calculated for both Sand and Sandy Loam soils. The soil parameters used in the derivation of the RSK GrAC are those presented in Table 3.1 of SR3⁽³⁾.

The RSK GrAC have been derived for groundwater depths of 0.65 m, 1.5 m, 2.5 m and 5.0 m below ground level, incorporating a capillary fringe (see Table 2).

Input selection - attenuation factors

In line with recommendations provided in Environment Agency SR3⁽³⁾ a sub-surface to indoor attenuation factor of 10 has been applied to certain RBCA derived 'site-specific target levels'. SR3⁽³⁾ states that, as a general rule of thumb, it is recognised that estimating vapour phase concentrations from dissolved and sorbed phase petroleum hydrocarbons by using partition coefficients are at least a factor of ten higher than those likely to be measured on-site. This difference is likely to be due to a number of factors, however aerobic biodegradation in the unsaturated zone is believed to be largely responsible. RSK has therefore applied this attenuation factor to all volatile petroleum hydrocarbon fractions (including BTEX, trimethylbenzenes and the polycyclic aromatic hydrocarbons (PAH) naphthalene, acenaphthene and acenaphthylene). No such attenuation factors have been applied to other non-hydrocarbon chemical species, including chlorinated hydrocarbons or fuel oxygenates such as MtBE.

Convective (volumetric) air flow through foundation cracks (Q_{soil}) is a sensitive parameter in the calculation of GrAC and has been calculated within RBCA on a soil-specific basis for Sand and Sandy Loam in a residential exposure scenario (see Table 2). This approach is less conservative than using the default Q_{soil} value recommended in SR3⁽³⁾ for a Sandy Loam (150 cm³ s⁻¹) and used in the CLEA model (version 1.071) for Sandy Loam (and Sand) soils (150 cm³ s⁻¹) in a commercial scenario.

Table 2: Commercial scenario – RBCA inputs

Parameter	Unit	Value	Justification
Receptor – female child			
Averaging time	Years	49	From Box 3.5, SR3 ⁽³⁾
Receptor weight	kg	70	Female adult, Table 4.6, SR3 ⁽³⁾
Exposure duration	Years	49	From Box 3.5, SR3 ⁽³⁾
Exposure frequency	Days yr ⁻¹	86.25	Weighted using occupancy period of 9 hours per day for 230 days of the year ((9hours x 230 days)/24 hours)
Soil type – sand	•	•	
Total porosity	-	0.54	
Volumetric water content – unsaturated (vadose) zone	-	0.24	CLEA value for sand. Parameters for sand from Table 4.4,
Volumetric air content - unsaturated (vadose) zone	-	0.30	highly sensitive parameter within the model and potentially highly variable in the field.
Dry bulk density	g cm⁻³ or kg L⁻¹	1.18	
Volumetric water content – capillary zone	-	0.35	Calculated using SR3 Equation 4.1. Value taken as the average moisture content calculated for suction heads (cm H_2O); 0 (i.e. saturated), 10, 20, 30, 40, 50 (i.e. unsaturated soil at field capacity). This is a highly sensitive parameter within the model.
Volumetric air content - capillary zone	-	0.19	Calculated from total porosity and volumetric water content of capillary zone. This is a highly sensitive parameter within the model.
Vertical hydraulic conductivity	cm d⁻¹	636	CLEA value for saturated conductivity of sandy loam, Table 4.4, SR3 ⁽³⁾ equivalent to 7.36 E-03 cm s ⁻¹
Vapour permeability	m ²	7.54 E-12	Calculated for sand using equations in Appendix 1, SR3 ⁽³⁾
Capillary zone thickness	m	0.25	Taken from C W Fetter, Applied Hydrogeology 4 th Ed, 1994 ⁽¹¹⁾ and R Heath, Basic groundwater hydrology 1992 ⁽¹²⁾ for a medium sand
Fraction organic carbon	%	0.0058	Equivalent to SOM = 1%. Note that GrAC are independent on FOC/SOM content since partitioning is assumed to be between aqueous and vapour phases only
Soil type – sandy loam		•	
Total porosity	-	0.53	
Volumetric water content – unsaturated (vadose) zone	-	0.33	CLEA value for sandy loam. Parameters for sandy loam from
Volumetric air content - unsaturated (vadose) zone	-	0.20	zone is a highly sensitive parameter within the model and potentially highly variable in the field.
Dry bulk density	g cm ⁻³ or kg/L	1.21	
Volumetric water content – capillary zone	-	0.42	Calculated using SR3 Equation $4.1^{(3)}$. Value taken as the average moisture content calculated for suction heads (cm H ₂ O); 0 (i.e. saturated), 10, 20, 30, 40, 50 (i.e. unsaturated soil at field capacity). This is a highly sensitive parameter within the model.
Volumetric air content - capillary zone	-	0.11	Calculated from total porosity and volumetric water content of capillary zone. This is a highly sensitive parameter within the model.

Parameter	Unit	Value	Justification
Vertical hydraulic conductivity	cm d ⁻¹	308	CLEA value for saturated conductivity of sandy loam, Table 4.4, SR3 ⁽³⁾ equivalent to 3.56E-3 cm s ⁻¹
Vapour permeability	m ²	3.05 E-12	Calculated for sandy loam using equations in Appendix 1, SR3 ⁽³⁾
Capillary zone thickness	m	0.4	Taken from R Heath, Basic Groundwater Hydrology 1992 ⁽¹²⁾ for a fine sand. Note: C W Fetter, Applied Hydrogeology 4 th Ed, 1994 ⁽¹¹⁾ value for fine sand is 0.5 m
Fraction organic carbon	%	0.0058	Equivalent to SOM = 1%. Note that GrAC are independent on FOC/SOM content since partitioning is assumed to be between aqueous and vapour phases only
Building – pre-1970 three storey	office		
Building volume/area ratio	m	9.6	T-H-240 0D2 ⁽³⁾
Foundation area	m ²	424	
Foundation perimeter	m	82.40	Based on square root of building area being 20.59m
Building air exchange rate	d ⁻¹	24	
Depth to bottom of foundation slab	m	0.15	Table 3.10, SR3 ⁽³⁾ Building air exchange rate equivalent to 2.8 E-04 s ⁻¹
Foundation thickness	m	0.15	
Foundation crack fraction	-	3.89E-04	Calculated from floor crack area of 0.165m ² and building footprint of 424m ² in Table 4.21, SR3 ⁽³⁾
Volumetric water content of cracks	-	0.24 / 0.33	For sand / sandy loam, assumed equal to underlying soil type in assumption that cracks become filled with
Volumetric air content of cracks	-	0.30 / 0.20	sandy loam from Table 4.4, SR3 ⁽³⁾
Indoor/outdoor differential pressure	Ра	4.4	From Table 3.3, SR3 ⁽³⁾ Equivalent to 44g/cm/s ²
Convective air flow through cracks (Q _{soil}) - Sand	m ³ s ⁻¹	1.95 E-04	Soil-specific calculated parameter in RBCA equivalent (and cross checked) with equations A1, A2, A3, A8, A9 in SR3 ⁽³⁾ . Equivalent to 195 cm ³ s ⁻¹
Convective air flow through cracks (Q _{soil}) – Sandy Loam	m ³ s ⁻¹	7.7 E-05	Soil-specific calculated parameter in RBCA equivalent (and cross checked) with equations A1, A2, A3, A8, A9 in SR3 ⁽³⁾ . Equivalent to 77 cm³ s ¹

RSK GrAC derivation outputs

The RSK GrACs are presented in Table 3.

Within the RSK GrAC the following should be noted:

- GrAC do not take account of outdoor inhalation exposure to VOC, which is considered to contribute minimally to overall inhalation exposure
- GrAC do not take account of other exposure routes potentially relevant to VOC in shallow groundwater such as direct contact or root uptake
- No biodegradation is assumed to occur in the unsaturated zone. Where aerobic conditions on site are known to exist the GrAC for hydrocarbons may therefore be conservative
- GrAC do not take account of preferential flow into buildings such as through unsealed service entries. In such circumstances GrAC may not be appropriate for use
- GrAC are based on a soil vapour intrusion CSM and are not appropriate for use when the foundation is in direct contact with contaminated groundwater

- GrAC assume that the capillary fringe is un-contaminated with VOC, which is unlikely, particularly where groundwater levels are variable
- GrAC set at the theoretical aqueous solubility limit are not considered to pose a risk to human health
- GrAC do not take into account the interaction between contaminants and the influence this may have on the theoretical aqueous solubility
- GrACs are only applicable to dissolved phase contaminants where the modelled assessment criteria is below the aqueous solubility limits

References

- 1. Society for Brownfield Risk Assessment (SoBRA) (2017), *Development of generic risk assessment criteria for assessing vapour risks to human health from volatile contaminants in groundwater* (<u>https://sobra.org.uk/</u>). (accessed March 2017)
- 2. Environment Agency (2009), *Science Report SC050021/SR4 CLEA Software (version 1.05) Handbook* (Bristol: Environment Agency).
- 3. Environment Agency (2009), *Science Report SC050021/SR3 Updated technical background to the CLEA model* (Bristol: Environment Agency).
- 4. Environment Agency (2008), *Science Report SC050021/SR7. Compilation of Data for Priority Organic Pollutants for Derivation of Soil Guideline Values* (Bristol: Environment Agency).
- 5. Environment Agency (2009), 'Science Reports SC050021 SGV and TOX reports for: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like PCBs'; 'Supplementary information for the derivation of SGV for: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like PCBs', and 'Contaminants in soil: updated collation of toxicological data and intake values for humans: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like PCBs'. Available at: https://www.gov.uk/government/publications/contaminants-in-soil-updated-collation-of-toxicological-data-and-intake-values-for-humans and https://www.gov.uk/government/publications/land-contamination-soil-guideline-values-sqvs (accessed 4 February 2015)
- 6. Nathanial, C. P., McCaffrey, C., Ashmore, M., Cheng, Y., Gillet, A. G., Ogden, R. C. and Scott, D. (2009), *LQM/CIEH Generic Assessment Criteria for Human Health Risk Assessment*, second edition (Nottingham: Land Quality Press).
- 7. CL:AIRE (2009), Soil Generic Assessment Criteria for Human Health Risk Assessment (London: CL:AIRE).
- Contaminated Land: Applications in Real Environment (CL:AIRE) (2014). 'Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination', Revision 2, DEFRA research project SP1010.
- 9. USEPA (2011), *Exposure factors handbook*, EPA/600/R-090/052F (Washington, DC: Office of Research and Development).
- 10. Environment Agency (2009), *Human health toxicological assessment of contaminants in soil. Science Report Final SC050021/SR2* (Bristol: Environment Agency).
- 11. Fetter, C.W. (1994), Applied Hydrogeology. 4th Ed.
- 12. Heath, R. (1992), *Basic Groundwater Hydrology*. U.S. Geological Survey, Water Supply Paper 2220.

				Table 3	: RSK GrAC	(ug/l)			
				C	OMMERCIAL				
		SA	ND				SANDY	LOAM	
GW Depth (m)	0.65	1.5	2.5	5		0.65	1.5	2.5	5
	1								
Metals									
Elemental mercury	56	56	56	56		56	56	56	56
Methyl mercury	100000	100000	100000	100000	ļ	100000	100000	100000	100000
Volatile Organic Compounds									
Benzene	30740	40200	51330	79160		158660	193720	234960	338070
Toluene	59000	59000	59000	59000		59000	59000	59000	59000
Ethylbenzene	180000	180000	180000	180000		180000	180000	180000	180000
Xylene - m	200000	200000	200000	200000		200000	200000	200000	200000
Xylene - o	173000	173000	173000	173000		173000	173000	173000	173000
Xylene - p	200000	200000	200000	200000		200000	200000	200000	200000
Total xylene	173000	173000	173000	173000		173000	173000	173000	173000
Methyl tertiary-Butyl ether (MTBE)	12068580	16013210	20653950	32255810		48000000	48000000	48000000	4800000
Trichloroethene	820	1090	1400	2180		4410	5400	6550	9440
Tetrachloroethene	7430	9930	12870	20210		41190	50460	61360	88610
1,1,1-Trichloroethane	456280	604180	778170	1213140		1300000	1300000	1300000	1300000
1,1,1,2 Tetrachloroethane	35130	47100	61190	96410		180890	225050	277000	406880
1,1,2,2-Tetrachloroethane	231900	313430	409350	649150		844250	1131800	1470100	2315840
Carbon Tetrachloride	1200	1590	2050	3210		6600	8050	9760	14030
1,2-Dichloroethane	1290	1690	2160	3350		5860	7330	9060	13390
Vinyl Chloride	90	120	140	220		460	550	660	930
1,2,4-Trimethylbenzene	55900	55900	55900	55900		55900	55900	55900	55900
Semi-Volatile Organic Compounds									
Acenaphthene	4100	4100	4100	4100		4100	4100	4100	4100
Acenapththylene	7950	7950	7950	7950		7950	7950	7950	7950
Naphthalene	19000	19000	19000	19000		19000	19000	19000	19000
Petroleum Hydrocarbons									
Aliphatic hydrocarbons EC5-EC6	35900	35900	35900	35900		35900	35900	35900	35900
Aliphatic hydrocarbons >EC6-EC8	5370	5370	5370	5370		5370	5370	5370	5370
Aliphatic hydrocarbons >EC8-EC10	427	427	427	427		427	427	427	427
Aliphatic hydrocarbons >EC10-EC12	33.9	33.9	33.9	33.9		33.9	33.9	33.9	33.9
Aliphatic hydrocarbons >EC12-EC16	0.759	0.759	0.759	0.759		0.759	0.759	0.759	0.759
Aromatic hydrocarbons >EC8-EC9 (styrene)	290000	290000	290000	290000		290000	290000	290000	290000
Aromatic hydrocarbons >EC9-EC10	64600	64600	64600	64600		64600	64600	64600	64600
Aromatic hydrocarbons >EC10-EC12	24500	24500	24500	24500		24500	24500	24500	24500
Aromatic hydrocarbons >EC12-EC16	5750	5750	5750	5750		5750	5750	5750	5750
				-	-				
Notes:									
Values less than 100 have not been rounded up	or down; val	ues greater th	an 100 have	been rounded	d to the neare	st 10.			
Highlighted values exceed solubility limit for the	pure compo	und in water i	aqueous soli	ubility): GrAC	defaults to the	e limit of solu	ıbility.		
No vadose zone biodegradation considered	,			,,,			,		
Sub-surface to indoor air correction factor of 10) annlied to al	l netroleum (r	on-chlorinat	ed) bydrocart	oons				

Sub-surface to indoor air correction factor of 10 applied to all petroleum (non-chlorinated) hydrocarbons All GrAC are for 1% SOM (0.0058 FOC)

GENERIC ASSESSMENT CRITERIA FOR CONTROLLED WATERS

Protection of the water environment

The water environment in the United Kingdom is protected under a number of regulatory regimes. The relevant environmental regulator is consulted where there may be a risk that pollution of 'controlled waters' may occur or may have occurred in the past.

The term 'controlled waters' refers to coastal waters, inland freshwaters and groundwater. The EU Water Framework Directive (WFD) (2000/60/EC) is implemented via domestic regulations and guidance, covering aspects of groundwater and surface water protection as well as drinking water supply policy. Domestic legislation and guidance will vary across the United Kingdom. Therefore, the relevant legislation for England, Wales, Northern Ireland and Scotland should be reviewed, alongside guidance provided by the Environment Agency (EA), Natural Resource Wales (NRW), the Scottish Environmental Protection Agency (SEPA) or the Northern Ireland Environment Agency (NIEA), as appropriate.

The main objectives of the protection and remediation of groundwater under threat from land contamination are set out within "The Environment Agency's approach to groundwater protection", version 1.0 (March 2017)⁽¹⁾ and the associated guidance "Land contamination groundwater compliance points: quantitative risk assessments (March 2017)^(1a) that have replaced the previous guidance document "Groundwater Principles and Practice (GP3)". When assessing risks to groundwater, the following need to be considered:

- Where pollutants have not yet entered groundwater, all necessary and reasonable measures must be taken to:
 - prevent the input of hazardous substances into groundwater (see description of hazardous substances below)
 - *limit* the entry of other (non-hazardous) pollutants into groundwater to avoid pollution, deterioration in the status of groundwater bodies and to prevent sustained, upward trends in pollutant concentrations in groundwater.
- Where pollutants have already entered groundwater, the priority is to take all necessary and reasonable measures to:
 - *minimise* further entry of "contaminants" where there is a defined source
 - *limit the pollution* of groundwater or any effect on the status of the groundwater body from the future expansion of the 'plume', if necessary, by actively reducing its extent.

Within the context of groundwater risk assessments on sites affected by land contamination, "reasonable" means feasible without involving disproportionate costs. What costs are "disproportionate" depends on site-specific circumstances, which may include:

- Considerations of technical feasibility such as identified by the remedial options appraisal, this may be due to the distribution or nature of the contamination and the available remedial methods to treat the identified contamination;
- Sustainability considerations.

DEFINITIONS AND SUBSTANCE CLASSIFICATIONS

Risks to surface waters:

When assessing risks to surface waters, the following list of definitions should be understood:

Priority substances (PS) are harmful substances originally identified under the Water Framework Directive (WFD) 2000/60/EC as substances 'presenting a significant risk to or via the aquatic environment' at a European level. Member States are required to incorporate the identified **PS** into their country-wide monitoring programmes. There are currently 33 **PS** defined within the Priority Substances Directive (2013/39/EU; Annex 1), with a further 12 additional substances due to come into force from 22 December 2018. Directive 2013/39/EU has been transposed into domestic legislation for England and Wales by The Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015.

Under the umbrella of **PS**, there is a sub-set of substances identified as being "hazardous", and these are referred to as **Priority hazardous substances (PHS).** The list of **PHS** is defined at EU level within the Priority Substances Directive (2013/39/EU). The WFD defines hazardous substances as 'substances (or groups of substances) that are toxic, persistent and liable to bio-accumulate, and other substances or groups of substances that give rise to an equivalent level of concern.' There are currently 15 **PHS**, with a further 6 additional substances due to come into force from 22 December 2018.

There is also another group of substances defined at EU level and which are referred to as **other pollutants (OP)** in Directive 2013/39/EU. These are additional substances which although not **priority substances**, have EQS which are identical to those laid down in the legislation which applied prior to 13 January 2009 (Directive 2008/105/EU). The **OP** are listed along with the **priority substance (PS)** within the Priority Substances Directive (2013/39/EU), and their associated EQS are also listed therein. There are 6 **OP** defined within the Priority Substances Directive (2013/39/EU).

In addition to the EU level substances, there are also a group of pollutants defined at a Member State level, referred to as **Specific pollutants (SP)**. These substances are pollutants which are released in significant quantities into water bodies in each of the individual European Member States. Under the WFD, Member States are required to set their own EQS for these substances. An indicative list of **SP** is given in Annex VIII of the WFD. Many of the substances categorised as **SP** in the UK were formerly List 2 substances under the old Groundwater Directive (80/68/EEC). The **SP** are defined within Part 2 (Table 1) of The Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015.

Risks to groundwater:

When assessing risks to groundwater, the following definitions should be understood:

Under the requirements of the Groundwater Daughter Directive (2006/118/EU), the UK has published a list of substances it considers to be **hazardous substances** with respect to groundwater. In their advisory capacity to the government, this list has been derived by the UK Joint Agencies Groundwater Directive Advisory Group (JAGDAG), of which the Environment Agency is a member. The JAGDAG list of **hazardous substances** was published in January 2017 and the Environment Agency will use the updated list of hazardous substances from this date for all new activities that may lead to the discharge of hazardous substances to groundwater. The list is extensive and can be found in full at:

https://www.wfduk.org/sites/default/files/Media/170116%20Substance%20Determinationsfinal .pdf

Selecting the appropriate assessment criteria

When assessing the risks to controlled waters, various assessment criteria apply, depending on the nature of the assessment and the conceptual site model.

Where a surface water body is involved, then Environmental Quality Standards (EQS) are the relevant assessment criteria as they are designed to be protective of surface water ecology.

Where a public water supply or a Principal aquifer is involved, then the standards defined in The Water Supply (Water Quality) Regulations⁽²⁾ are the primary source of assessment criteria. The Private Water Supplies Regulations⁽³⁾ may also be applicable in some cases. For instances where there are no UK assessment criteria, then the World Health Organisation (WHO) drinking water guidelines⁽⁴⁾ may be used.

This appendix presents the generic assessment criteria (GAC) that RSK considers suitable for assessing risks to controlled waters for our most commonly encountered determinants. A full list of EQS for England and Wales are included in The Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015.

The RSK GAC for controlled waters are presented in **Table 1** and **Table 2**. In line with the Environment Agency's Remedial Targets Methodology, the GAC for controlled waters are termed 'target concentrations'.

The appropriate target concentrations should be selected with consideration to:

- the site conceptual model (i.e. the receptor at potential risk);
- whether the substance is already present in groundwater at the site;
- whether or not the substance is classified as a priority hazardous substance under the Priority Substances Directive (2013/39/EC) (see above), or as a hazardous substance according to the current list of JAGDAG determinations⁽⁵⁾; and
- background concentrations in the aquifer (if applicable).

It is important to remember that the WFD and Environment Agency guidance^(1 & 1a) support a sustainable, risk-based approach be applied to groundwater contamination. Exceedance of any target concentration does not necessarily imply that an unacceptable risk exists or that remediation is inevitably required.

Target concentrations shaded in green	Target concentrations shaded in orange
are <u>statutory values</u>	are <u>non-statutory values</u>

Note: Units µg/l throughout (unless otherwise stated)

Table 1: Target concentrations for controlled waters (excluding TPH CWG fractions)

Substand	e classification			Target conce	entrations (μg/l)	
			Minimum	LIK drinking water	EQS or best e	equivalent
Groundwater receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾	Determinant	reporting value	standard (or best equivalent)	Freshwater	Transitional (estuaries) and coastal waters
		Metal	s & other inorg	ganics		
Hazardous substance	Specific pollutant	Arsenic	-	10 ⁽²⁾	50 ^(6a)	25 ^(6a)
Non-hazardous pollutant	Priority substance	Cadmium	0.1 ⁽⁷⁾	5 ⁽²⁾	≤0.08, 0.08, 0.09, 0.15, 0.25 ^(6b)	0.2 ^(6a)
(Not determined)	-	Chromium (total)	-	50 ⁽²⁾	Sum values for chro	omium III and VI
(None	Specific pollutant	Chromium (III)	-	Use value for total chromium	4.7 ^(6a)	-
Hazardous substance	Specific pollutant	Chromium (VI)			3.4 ^(6a)	0.6 ^(6a)

Substand	e classification			Target conce	entrations (µg/l)	
			Minimum	IIK drinking water	EQS or best e	equivalent
Groundwater receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾	Determinant	reporting value	standard (or best equivalent)	Freshwater	Transitional (estuaries) and coastal waters
						3.76 dissolved, where DOC ≤1mg/l ^(6a)
(Not determined)	Specific pollutant	Copper	-	2,000 ⁽²⁾	1 bioavailable ^(6a)	3.76µg/l + (2.677µg/l x ((DOC/2) – 0.5µg/l)) dissolved, where DOC >1mg/l ^(6a)
Hazardous substance	Priority substance	Lead	-	10 ⁽²⁾	1.2 bioavailable ^(6a)	1.3 ^(6a)
Hazardous substance	Priority hazardous substance	Mercury	0.01 ⁽⁷⁾	1 ⁽²⁾	0.07 ^(6c)	0.07 ^(6c)
Non-hazardous pollutant	Priority substance	Nickel	-	20 ⁽²⁾	4.0 bioavailable ^(6a)	8.6 ^(6a)
Non-hazardous pollutant	-	Selenium	-	10 ⁽²⁾	-	-
Non-hazardous pollutant	Specific pollutant	Zinc	-	3,000 ⁽⁸⁾	10.9 bioavailable ^(6a)	6.8 dissolved ^(6a)
None	Specific pollutant	Iron	-	200 ⁽²⁾	1000 ^{(6a)*1}	1000 ^{(6a))*1}
None	Specific pollutant	Manganese	-	50 ⁽²⁾ (0.05mg/l)	123 bioavailable ^(6a) (0.123mg/l)	-
(Not determined)	-	Aluminium	-	200 ⁽²⁾	-	-

Substanc	e classification			Target conce	entrations (µg/l)	
					EQS or best e	equivalent
Groundwater receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾	Determinant	Minimum reporting value	ok drinking water standard (or best equivalent)	Freshwater	Transitional (estuaries) and coastal waters
Hazardous substance	Priority hazardous substance	Tributyltin compounds (Tributyltin-cation)	0.001 ⁽⁷⁾	-	0.0002 ^(6a)	0.0002 ^(6a)
(Not determined)	-	Sodium	-	200,000 ⁽²⁾ (200 mg/l)	-	-
Non-hazardous pollutant	Specific pollutant	Cyanide (Hydrogen cyanide)	-	50 ⁽²⁾ (0.05 mg/l)	1 ^(6a) (0.001 mg/l)	1 ^(6a) (0.001 mg/l)
Non-hazardous pollutant	-	Total ammonia ^{\$} (ammonium (as NH_4^+) plus ammonia (NH_3)	-	500 ⁽²⁾ (0.5 mg/l)	300 ^(6f) (0.3 mg/l)	-
Non-hazardous pollutant	Specific pollutant	Ammonia un-ionised (NH ₃)	-	-	-	21 ^(6a) (0.021 mg/l)
Non-hazardous pollutant	Specific pollutant	Chlorine	-	-	2 ^(6a) (0.002 mg/l)	10 ^(6d) (0.01 mg/l)
(Not determined)	-	Chloride	-	250,000 ⁽²⁾ (250 mg/l)	-	-
(Not determined)	-	Sulphate	-	250,000 ⁽²⁾ (250 mg/l)	-	-
(Not determined)	-	Nitrate (as NO ₃)	-	50,000 ⁽²⁾ (50 mg/l)	-	-
(Not determined)	-	Nitrite (as NO ₂)	-	500 ⁽²⁾ (0.5 mg/l)	10 ⁽⁹⁾ (0.01 mg/l)	-
		Volatile or	ganic compou	inds (VOC)		

Substand	e classification			Target conce	entrations (µg/l)	
			Minimum	LIK drinking water	EQS or best e	equivalent
Groundwater receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾	Determinant	reporting value	standard (or best equivalent)	Freshwater	Transitional (estuaries) and coastal waters
Non-hazardous pollutant	Other pollutant	Tetrachloroethene (tetrachloroethylene)	0.1 ⁽⁷⁾	10 ⁽²⁾	10 ^(6a)	10 ^(6a)
Hazardous substance	Other pollutant	Trichloroethene (trichloroethylene)	0.1 ⁽⁷⁾	10 ⁽²⁾	10 ^(6a)	10 ^(6a)
None	Specific pollutant	Tetrachloroethane	-	-	140 ^(6a)	-
Hazardous substance	Other pollutant	Carbon tetrachloride (tetrachloromethane)	0.1 ⁽⁷⁾	3.0 ⁽²⁾	12 ^(6a)	12 ^(6a)
Non-hazardous pollutant	Priority substance	1,2-Dichloroethane	1.0 ⁽⁷⁾	3.0 ⁽²⁾	10 ^(6a)	10 ^(6a)
Hazardous substance	-	Vinyl chloride (chloroethene)	-	0.5 ⁽²⁾	-	-
Non-hazardous pollutant	Priority substance	Dichloromethane	-	20 ⁽⁴⁾	20 ^(6a)	20 ^(6a)
Non-hazardous pollutant	Priority substance	Trichlorobenzenes	0.01 ⁽⁷⁾	-	0.4 ^(6a)	0.4 ^{((6a)}
(Not determined)	-	Trihalomethanes	-	100 ^(2a)	-	-
Hazardous substance	Priority substance	Trichloromethane (Chloroform)	0.1 ⁽⁷⁾	(see "Trihalomethanes"above)	2.5 ^(6a)	2.5 ^(6a)
Non-hazardous pollutant	Priority hazardous substance	Di(2-ethylhexyl) phthalate (bis(2-ethylhexyl) phthalate, DEHP)	-	8 ⁽⁴⁾	1.3 ^(6a)	1.3 ^(6a)

Substance classification			Target concentrations (µg/I)			
		Determinant Minimum reporting value	Minimum		EQS or best equivalent	
Groundwater receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾		reporting value	standard (or best equivalent)	Freshwater	Transitional (estuaries) and coastal waters
None	Specific pollutant	Benzyl butyl phthalate	-	-	7.5 ^(6a)	0.75 ^(6e)
Hazardous substance	Priority hazardous substance	Hexachlorobutadiene	0.005 ⁽⁷⁾	0.6 ⁽⁴⁾	0.6 ^(6c)	0.6 ^(6c)
		Semi-volatile	organic comp	ounds (SVOC)		
(Not determined)	-	Acenaphthylene (C12-C16)	-	-	5.8 ⁽¹	0)
Hazardous substance	Priority hazardous substance	Anthracene (C16-C35)	-	-	0.1 ^(6a)	0.1 ^(6a)
Non-hazardous pollutant	Priority substance	Naphthalene (C10-C12)	-	-	2 ^(6a)	2 ^(6a)
Hazardous substance	Priority substance	Fluoranthene (C16-C35)	-	-	0.0063 ^(6a)	0.0063 ^(6a)
Hazardous substance(s)	Priority hazardous substance(s)	Benzo(a)pyrene (C16-C35)	-	0.01 ⁽²⁾	0.00017 ^(6a)	0.00017 ^(6a)
		Benzo(b)fluoranthene (C16-C35)	-	0.1 ⁽²⁾ sum of the concentration of the	No EQS for these substances.	
		Benzo(k)fluoranthene (C16-C35)	-	four specified compounds	compound	instead.

Substance classification			Target concentrations (μg/l)			
		Determinant			EQS or best equivalent	
Groundwater receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾		reporting value	or drinking water standard (or best equivalent)	Freshwater	Transitional (estuaries) and coastal waters
		Benzo(g,h,i)perylene (C16-C35)	-			
		Indeno(1,2,3-cd) pyrene (C16-C35)	-			
Non-hazardous pollutant	Specific pollutant	Phenol		-	7.7 ^(6a)	7.7 ^(6a)
Hazardous substance	Specific pollutant	2,4-Dichlorophenol	0.1 ⁽⁷⁾	-	4.2 ^(6a)	0.42 ^(6a)
Hazardous substance	Priority substance	Pentachloro-phenol (PCP)	0.1 ⁽⁷⁾	9 ⁽⁴⁾	0.4 ^(6a)	0.4 ^(6a)
Petro			eleum hydroca	rbons		
Hazardous substance	-	Total petroleum hydrocarbons	-	See Table 2 for individual (non-statutory) TPH CWG fractions with respect to drinking water receptors	See individual risk driving compounds (i.e. BTEX and PAH) for specific EQS	
Hazardous substance	Priority substance	Benzene	1 ⁽⁷⁾	1 ⁽²⁾	10 ^(6a)	8 ^(6a)
Hazardous substance	Specific pollutant	Toluene	4 ⁽⁷⁾	7 00 ⁽⁴⁾	74 ^(6a)	74 ^(6a)
Hazardous substance	-	Ethylbenzene	-	300 ⁽⁴⁾	-	-
(Not determined)	-	Xylenes	3 ⁽⁷⁾	500 ⁽⁴⁾	30 ⁽¹¹⁾	-

Substance classification			Target concentrations (µg/I)			
			Determinant Minimum reporting value	LIK drinking water	EQS or best equivalent	
Groundwater receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾	Determinant		standard (or best equivalent)	Freshwater	Transitional (estuaries) and coastal waters
Non-hazardous pollutant	-	Methyl tertiary butyl ether (MTBE)	-	15 ⁽¹²⁾	-	
Pesticides, fungicides, insecticides and herbicides						
	Other pollutant (Cyclodiene pesticides)	Aldrin	0.003 ⁽⁷⁾	0.03 ⁽²⁾	0.01 ^(6a)	
Hazardous substance(s)		Dieldrin	0.003 ⁽⁷⁾	0.03 ⁽²⁾		0.005 ^(6a)
		Endrin	0.003 ⁽⁷⁾	0.1 ^(2b)		
		Isodrin* ²	0.003 ⁽⁷⁾	0.1 ^(2b)		
Hazardous substance	Other pollutant	DDT (total)	0.002 ⁽⁷⁾	1 ⁽⁴⁾	0.025 ^(6a)	0.025 ^(6a)
(Not determined) – assume to be Hazardous Substance	-	Total pesticides	-	0.5 ⁽²⁾	-	-
(Not determined) - assume to be Hazardous Substance	-	Other individual pesticides	-	0.1 ⁽²⁾		

Substance classification			Target concentrations (µg/l)			
Groundwater Surface water Determinan receptors ⁽⁵⁾ receptors ⁽⁶⁾			Minimum	UK drinking water	EQS or best equivalent	
	Determinant	reporting value	standard (or best equivalent)	Freshwater	Transitional (estuaries) and coastal waters	
Hazardous substance	Specific pollutant	Carbendazim	-	-	0.15 ^(6a)	-
Hazardous substance	Specific pollutant	Chlorothalonil	-	-	0.035 ^(6a)	-
Hazardous substance	Specific pollutant (until 22/12/18, after which it becomes a Priority substance)	Cypermethrin	-	-	0.0001 ^(6a) From 22/12/18: 8.0E-5 ^(6a)	0.0001 ^(6a) From 22/12/18: 8.0E-6 ^(6a)
Hazardous substance	Specific pollutant	Dimethoate	0.01 ⁽⁷⁾	-	0.48 ^(6a)	0.48 ^(6a)
(Not determined)	Specific pollutant	Glyphosate	-	-	196 ^(6a)	196 ^(6a)
Hazardous substance	Specific pollutant	Linuron		-	0.5 ^(6a)	0.5 ^(6a)
Non- hazardous pollutant	Specific pollutant	Mecoprop	0.04 ⁽⁷⁾	-	18 ^(6a)	18 ^(6a)
Non- hazardous pollutant	Specific pollutant	Methiocarb	-	-	0.01 ^(6a)	-
Non- hazardous pollutant	Specific pollutant	Pendimethalin	-	20 ⁽⁴⁾	0.3 ^(6a)	-

Substance classification			Target concentrations (µg/l)			
		Minimum	UK drinking water	EQS or best equivalent		
Groundwater receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾	Determinant	reporting value	standard (or best equivalent)	Freshwater	Transitional (estuaries) and coastal waters
Hazardous substance	Specific pollutant	Permethrin	0.001 ⁽⁷⁾	-	0.001 ^(6a)	0.0002 ^(6a)
Hazardous substance	Priority substance	Alachlor	-	20 ⁽⁴⁾	0.3 ^(6a)	0.3 ^(6a)
Hazardous substance	Priority substance	Atrazine	0.03 ⁽⁷⁾	100 ⁽⁴⁾	0.6 ^(6a)	0.6 ^(6a)
Hazardous substance	Priority substance	Diuron	-	-	0.2 ^(6a)	0.2 ^(6a)
Hazardous substance	Priority hazardous substance	Endosulphan	0.005 ⁽⁷⁾	-	0.005 ^(6a)	0.0005 ^(6a)
Non- hazardous pollutant	Priority substance	Isoproturon	-	9 ⁽⁴⁾	0.3 ^(6a)	0.3 ^(6a)
Hazardous substance	Priority substance	Simazine	0.03 ⁽⁷⁾	2 ⁽⁴⁾	1 ^(6a)	1 ^(6a)
Hazardous substance	Priority hazardous substance	Trifluralin	0.01 ⁽⁷⁾	20 ⁽⁴⁾	0.03 ^(6a)	0.03 ^(6a)
(Not determined)	From 22/12/18: Priority substance	Dichlorovos	-	-	From 22/12/18: 6.0E-4 ^(6a)	From 22/12/18: 6.0E-5 ^(6a)
Hazardous substance	From 22/12/18: Priority substance	Heptachlor and heptachlor epoxide	-	0.03 ⁽²⁾	From 22/12/18: 2.0E-7 ^(6a)	From 22/12/18: 1.0E-08 ^(6a)
Miscellaneous						

Substance classification			Target concentrations (μg/l)				
Groundwater receptors ⁽⁵⁾		Determinant	Minimum reporting value	UK drinking water standard (or best equivalent)	EQS or best equivalent		
	Surface water receptors ⁽⁶⁾				Freshwater	Transitional (estuaries) and coastal waters	
None	Specific pollutant	Triclosan (antibacterial agent)	-	-	0.1 ^(6a)	0.1 ^(6a)	
Hazardous substance	From 22/12/18: Priority hazardous substance	Perfluoro-octane sulfonic acid (and its derivatives) (PFOS)	-	-	From 22/12/18: 6.5E-4 ^(6a)	From 22/12/18: 1.3E-4 ^(6a)	
Hazardous substance	From 22/12/18: Priority hazardous substance	Hexabromo cyclododecane (HBCDD)	-	-	From 22/12/18: 0.0016 ^(6a)	From 22/12/18: 0.0016 ^(6a)	

Notes:

'-' A target concentration is not available.

^{\$}Please note that total ammonia (NH₄⁺ and NH₃) is equivalent to ammoniacal nitrogen in laboratory reports

*¹ Please note that although iron is listed in the 2015 Direction as 1.000 μg/l, the EQS remains at 1mg/l in Scotland and it is assumed this is an error and should read either 1,000 or 1000μg/l.

*² Please note that although Isodrin is not listed in name within the group of "Cyclodiene pesticides" in Table 1 of Schedule 3 Part 3 of the 2015 Direction⁽⁶⁾, the CAS number for Isodrin (465-73-6) **is** listed and therefore it is assumed that it has been missed off the named list of substances.

*³ Total petroleum hydrocarbons is used for consistency, but is an analytical method-defined measurement for a mixture of hydrocarbons subject to environmental analysis¹¹.

"Bioavailable" in relation to copper, zinc, nickel and manganese (but not lead) is the generic EQSbioavailable^(6a) derived from the Metal Bioavailability Assessment Tool (M-BAT) developed by the Water Framework Directive UK Technical Advisory Group (WFDTAG). Exceedance of this value should prompt a site-specific assessment using the M-BAT with pH, DOC and Ca to derive a site-specific EQS termed the PNEC_{dissolved}. http://www.wfduk.org/resources/rivers-lakes-metal-bioavailability-assessment-tool-m-bat.

For zinc, if there is an exceedance of the EQSbioavailable in an initial GQRA, Tier 2 required that the EQS for zinc should also have the ambient background concentration of zinc added as well

Table 2: World Health Organization (WHO) guide values for TPH CWG fractions in drinking water⁽¹³⁾ (as referenced in CL:AIRE, 2017⁽¹¹⁾)

TPH CWG fraction	WHO guide value for drinking water ⁽¹³⁾ (µg/l)				
Aliphatic fractions:					
Aliphatic EC5-EC6	15,000				
Aliphatic >EC6-EC8	15,000				
Aliphatic >EC8-EC10	300				
Aliphatic >EC10-EC12	300				
Aliphatic >EC12-EC16	300				
Aliphatic >EC16-EC21	-				
Aliphatic >EC21-EC35	-				
Aromatic fractions:					
Aromatic EC5-EC6	10 (benzene)				
Aromatic >EC6-EC8	700 (toluene)				
Aromatic >EC8-EC10	300 (ethyl benzene)				
	500 (xylenes)				
Aromatic >EC10-EC12	90				
Aromatic >EC12-EC16	90				
Aromatic >EC16-EC21	90				
Aromatic >EC21-EC35	90				
Reference: World Health Organisation (WHO), 2008. Petroleum products in drinking- water. Background document for development of WHO guidelines for drinking water quality. WHO/SDE/WSH/05.08/123. World Health Organisation, Geneva ⁽¹³⁾ .					

References

- Environment Agency (2017), 'The Environment Agency's approach to groundwater protection', version 1.0, March 2017 (formerly contained within GP3) [accessed 29 March 2017]. https://www.gov.uk/government/collections/groundwater-protection
- Environment Agency (2017), 'Land contamination groundwater compliance points: quantitative risk assessments', March 2017 (formerly contained within GP3) [accessed 29 March 2017]. https://www.gov.uk/government/collections/groundwater-protection
- 2. The Water Supply (Water Quality) Regulations 2016 (SI 2016/619)
 - 2a. Sum of chloroform, bromoform, dibromochloromethane and bromodichloromethane
 - 2b. Standard applies to individual pesticides except aldrin, dieldrin, heptachlor and heptachlor epoxide, for which a separate standard is defined.
- 3. The Private Water Supplies (England) Regulations 2016. SI 2016 / 618
- 4. WHO (2011), Guidelines for drinking-water quality, 4th edn
- 5. JAGDAG hazard substance determinations: This list contains substances that are determined to be hazardous substances or non-hazardous pollutants for the purposes of the groundwater directive 2006/118/EC. The absence of an assessment or substance from the list means an assessment has not been done yet and is presented as 'Not yet determined'; if a substance has been assessed but does not fall into either category it is presented as 'None'. For further details on how substances are assessed, see the Joint Agencies Groundwater Directive Advisory Group (JAGDAG) 'Methodology for the determination of hazardous substances in groundwater for the purposes of the groundwater directive 2006/118/EC' which is available from the JAGDAG website. The methodology is a UK –wide framework that sets criteria for how to assess whether a substance is a hazardous substances in groundwater. The list of substances can be found at:

https://www.wfduk.org/sites/default/files/Media/170116%20Substance%20Determinationsfinal.pdf

- The Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015.
 - 6a. The EQS for these substances are based on a "long term mean" or an "annual average (AA)" EQS.
 - 6b. For cadmium and its compounds the EQS values vary depending on the hardness of the water as specified in five class categories (Class 1: < 40 mg CaCO3/I, Class 2: 40 to < 50 mg CaCO3/I, Class 3: 50 to < 100 mg CaCO3/I, Class 4: 100 to < 200 mg CaCO3/I and Class 5: ≥ 200 mg CaCO3/I).
 - 6c. The EQS for Mercury and hexachlorobutadiene are based on a "maximum acceptable concentration (MAC)" EQS in absence of an "annual average (AA)" EQS.
 - 6d. The EQS for chlorine in saltwater is based on the 95th percentile concentration of total residual oxidant, which refers to the sum of all oxidising agents existing in water, expressed as available chlorine.
 - 6e. The recommended saltwater standard is derived using a safety factor of 100. Where the standard is failed, it is recommended that supporting evidence of ecological damage should be obtained before committing to expensive action.
 - 6f. EQS for total ammonia is as per Schedule 3, Part 1, Table 7 of of the above directions. EQS applies to river types 1, 2 and 4 and 6 (namely upland and low alkalinity). The EQS for a lowland and high alkalinity rivers (types 3, 5 and 7) is 600μg/l (0.6mg/l).

Additional information on the Metal Bioavailability Assessment Tool (M-BAT) is available at http://www.wfduk.org/resources/rivers-lakes-metal-bioavailability-assessment-tool-m-bat

- 7. Minimum reporting values listed at <u>https://www.gov.uk/government/publications/values-for-groundwater-risk-assessments/hazardous-substances-to-groundwater-minimum-reporting-values</u> (updated 13 January 2017; accessed 29 March 2017). Note target concentration for xylenes is 3 μg/l each for o-xylene and m/p xylene as it may not be possible to separate m- and p-xylene; 135 tcb, 124 tcb, 123 tcb each to 0.01 μg/l)
- The Surface Waters (Abstraction for Drinking Water) (Classification) Regulations 1996 (as amended). SI 1996 / 3001
- Council Directive on the Quality of Fresh Waters Needing Protection or Improvement in Order to Support Fish Life (Freshwater Fish Directive) (78/659/EEC)
- 10. WRc plc (2002), R&D Technical Report P45.
- 11. CL:AIRE, 2017. Petroleum Hydrocarbons in Groundwater: Guidance on assessing petroleum hydrocarbons using existing hydrogeological risk assessment methodologies. V1.1.
- 12. Drinking Water Inspectorate (London, UK). Environmental Information Request on MTBE in drinking water. Ref. DWI 1/10/18; dated 28 November 2006. Value is based on the odour threshold for MTBE, which is lower than a health-based guideline value
- World Health Organisation (WHO), 2008. Petroleum products in drinking-water. Background document for development of WHO guidelines for drinking water quality. WHO/SDE/WSH/05.08/123. World Health Organisation, Geneva. [accessed 29 March 2017] <u>http://www.who.int/water_sanitation_health/dwq/chemicals/petroleumproducts_2add_june2008.p</u> df

FLOW CHART TO ASSIST WITH SELECTION OF TARGET CONCENTRATIONS

